ING’'S
College

LONDON

Assessing the Effectiveness of Fine-Tuned
Large Language Models for Automated
Unit Test Generation in Java: A
Comparative Study

Final Project Report

Author: Reibjok Othow
Supervisor: Dr. Gunel Jahangirova

Student ID: 21009059

April 12, 2024

Abstract

Unit testing stands as a foundational practice in software development, serving as a crucial
mechanism for validating the functional correctness and reliability of individual components in
isolation from the broader system context. Despite its importance, manual unit testing often
proves to be a labor-intensive process, posing challenges to the rapid progression of software
development.

This report delves into the intersection of cutting-edge automation techniques and unit
testing to address these issue, particularly focusing on the integration of Large Language Models
(LLMs), exploring their potential to address existing challenges in unit testing. In particular,
this study explores the efficacy of fine-tuned Large Language Models (LLMs) for automating
unit test generation in Java, through a comprehensive comparative study. The study entails
fine-tuning a large language model on open-source unit testing data extracted from five promi-
nent GitHub repositories. The fine-tuned model is evaluated against Evosuite, a renowned
search-based test generation tool in Java, an ordinary untrained LLM, and human-authored
tests. These four test suites undergo analysis based on three critical criteria: coverage, mutation
score, and adherence to a code convention.

The evaluation process involves prompting the model to generate tests for a Class Under
Test (CUT), followed by iteratively re-prompting the model to rectify any errors arising from
the generated tests. Upon error rectification, the findings indicate that the ordinary model
outperforms the three other methodologies in terms of coverage. Conversely, Evosuite exhibits
the highest mutation score, while the trained model surpasses other test suites in adherence
to a code convention. Notably, the study reveals that the fine-tuned model does not exhibit
superior performance over the ordinary model in any aspect.

This study sheds light on the strengths and limitations of fine-tuned LLMs in automated
unit test generation, providing valuable insights for researchers and practitioners in the field of

software testing and machine learning.

Originality Avowal

I verify that I am the sole author of this report, except where explicitly stated to the contrary.
I grant the right to King’s College London to make paper and electronic copies of the
submitted work for purposes of marking, plagiarism detection and archival, and to upload a
copy of the work to Turnitin or another trusted plagiarism detection service. I confirm this

report does not exceed 25,000 words.

Reibjok Othow
April 12, 2024

Acknowledgements

I would like to thank my supervisor, Dr Gunel Jahangirova, who has provided
me with invaluable help and support throughout the project. I could not have

done this without her guidance and wisdom.

Contents

1 Introduction

1.1 Aims and Objectives

2 Background

2.1 Software Testing
2.2 Unit Testing
2.3 Unit Test Quality Metrics
2.4 Unit Test Automation
2.5 Large Language Models

3 Related Works

3.1 An Evaluation of Evosuite

3.2 Evaluations on Large Language Models

33 LLMvsSBST.
3.4 Evaluations on Fined Tuned Models . .
35 Wrapup.

4 Requirements

4.1 Functional Requirements

4.2 Non-functional Requirements

5 Design & Specification

51 Overview
5.2 Fine Tuning
5.3 Evaluation.

6 Implementation

6.1 Overview
6.2 Prompt Generation
6.3 Fine Tuning
6.4 Evosuite Test Generation

6.5 Large Language Model Test Generation

6.6 Untrained Error Analysis
6.7 Trained Error Analysis
6.8 Error Ratification
6.9 Results Measurement

=

© N N o O

12

14
14
16
19
21
22

23
23
24

25
25
26
29

51
51
52
99
61
61
62
67
68
79

6.10 Wrap up« o o o e e

Legal, Social, Ethical and Professional Issues

7.1 Copyright Licensing
7.2 Open Sourcing Evaluation Datasets
7.3 Ethical Use of Large Language Models
Results/Evaluation

8.1 Overview e e e
8.2 Coverage Assessment
8.3 Mutation Score Assessment
8.4 Test Correctness Analysis
8.5 Synopsis e

Conclusion and Future Work

Extra Information

A.1 Tables, proofs, graphs, test cases,

User Guide

B.1 Instructions

Source Code

C.1 Imstructions

81
81
82
82

83
83
84
85
86
88

89

95
95

96
96

97

Chapter 1

Introduction

Unit testing is an essential stage of software development, serving as a keystone for validating the
correctness and reliability of individual components within a program. This rigorous practice,
while essential for software quality assurance, is not without its challenges, often emerging as
a time-consuming process that can impede the fast progression of software development. As
a result, the software development community has seen a surge in research and innovation
directed at automating unit testing processes, with the aim of not only accelerating testing but
also enhancing its efficiency and effectiveness.

While current automated testing frameworks have made strides in streamlining the genera-
tion and execution of test cases, they have inherent limitations which have prompted a search
for more advanced solutions. One key limitation is that these automated test generation tools
often require a reference implementation to compute oracles for the generated inputs [31]. Ad-
ditionally, studies have highlighted issues with the quality of the test code generated by these
tools, with evaluations showing the presence of suboptimal design choices, known as test smells,
in the automatically generated unit test classes, such as in the case of Evosuite and Randoop
which suffer Assert Roulette and Eager Test smells [20]. In addition, research has also shown
that while tools like Randoop and Evosuite are used for automated unit test generation, there
are challenges in how well the generated test suites perform at detecting actual faults in software
systems [48]. The influence of automatically generated unit tests on software maintenance has
also been another topic of investigation, indicating that the choice of traditional automation
tools can impact the effectiveness of software maintenance activities [49].

This report delves into the convergence of the latest automation techniques, specifically the

application of Large Language Models (LLMs) within the domain of unit testing. Large Lan-

guage Models, such as gpt-3.5-turbo, offer a promising avenue for overcoming these challenges,
leveraging their language understanding capabilities to produce unit tests that are not only
syntactically correct but also human-readable and contextually meaningful.

The landscape of LLMs for test generation encompasses many alternatives such as gpt-3.5-
turbo [34], Codex [10], CodeGen [32] and BART [26] to name a few. These models exhibit
diverse strengths based on their training data, architecture, and fine-tuning objectives, pre-
senting varied options for developers seeking to automate unit testing in different contexts. As
we shall explore in coming chapters, the effectiveness of LLMs in unit test generation has been
a subject of scholarly exploration, revealing both their potential and limitations. By examining
real-world results from empirical evaluations and comparative studies, this report draws on
evidence to underscore the potential benefits and limitations associated with LLMs, setting
the stage for the core focus of this work —— Assessing the Effectiveness of Fine-Tuned Large
Language Models for Automated Unit Testing in Java: A Comparative Study. The strategic
choice of Java, renowned for its clarity and robustness, aligns with the objective of generating
high-quality, human-readable unit tests that adhere closely to coding conventions.

This report aims to unfold the rise of automated testing methodologies, the emergence of
LLMs as a transformative force, and seeks to evaluate the combination the two for the task
of unit test generation. The reader will be able to appreciate the rationale behind fine-tuning
a Large Language Model to address the specific demands of unit test generation, exploring
its advantages and limitations. Through this empirical analysis, the report contributes to the
ongoing discourse surrounding automated testing methodologies, offering insights that pave
the way for more efficient, readable, and contextually aware unit tests in the realm of software

development.

1.1 Aims and Objectives

This project aims to evaluate a fine-tuned gpt-3.5-turbo model for automated unit test gener-

ation in the Java Programming Language. The overarching objectives of this report include:

e 1. Fine-Tune gpt-3.5-turbo for Unit Test Generation: Recognising the need for
tailored solutions, delve into the process of fine-tuning gpt-3.5-turbo specifically for unit
test generation in Java. Utilise a curated dataset of high-quality test cases to optimise

the model’s capabilities, addressing challenges identified in existing literature.

¢ 2. Collect and Examine Empirical Results: Gather and assess the outcomes of fine-

tuning gpt-3.5-turbo for unit test generation, considering factors such as coverage, quality,
readability, correctness and adherence to coding conventions. Draw comparisons with an
untrained gpt=3.5-turbo LLM and traditional automated testing methods, using Evosuite
test generation tool [13] as a representative, to provide a comprehensive understanding

of the model’s performance.

Through the fulfilment of these aims and objectives, this project seeks to contribute valuable

insights to automated testing techniques, paving the way for more efficient and readable tests.

Chapter 2

Background

This section will start by giving an overview of software testing and unit testing in particular,
and discuss the tedious nature of manual testing. It will then continue with an exploration of
the different methodologies of unit test automation that exist today and the advantages and
short comings of each. Upon this, it will explore Large Language Models and the recent surge
in their use for various tasks. In particular it will assess their ability to generate test cases and
a review of recent work that have traversed their use for this task. Finally, it will make a case

for fine tuning a Large Language Model for Test Generation, which is the heart of this project.

2.1 Software Testing

Software testing stands as a cornerstone within the realm of software engineering, represent-
ing a critical phase in the software development life cycle (SDLC). It embodies a multifaceted
process essential for ensuring the reliability, functionality, and overall quality of software sys-
tems. At its core, software testing entails a methodical and systematic examination of software
components and functionalities to validate their compliance with specified requirements and
intended behaviour. This process is indispensable for detecting and rectifying defects, errors,
and anomalies that may compromise the performance of the software system. By subjecting the
software to an assortment of tests, ranging from unit-level inspection to comprehensive system-
level evaluations, software testers aim to uncover dormant issues and mitigate potential risks
before the deployment of the software system. Moreover, software testing serves as a channel
for verifying adherence to design specifications, regulatory standards, and user expectations,

thereby instilling confidence in the software’s efficacy and suitability for its intended purpose.

2.2 Unit Testing

Unit testing, as a subset of software testing, occupies a pivotal position within this broader
landscape, focusing on the granular examination of individual units or components within the
software code-base. These units typically manifest as discrete classes, methods, or modules,
each representing a cohesive and self-contained unit of functionality. Unlike other forms of
testing that assess the integrated behaviour of the software system as a whole, unit testing iso-
lates these constituent units for meticulous examination. Through the creation of targeted test
cases and the execution of controlled tests, developers endeavour to validate the correctness,
robustness, and reliability of each unit in isolation. By uncovering defects at the micro-level
and addressing them early in the development cycle, unit testing contributes significantly to
the overall enhancement of software quality and the alleviation of technical debt. This proac-
tive approach not only fosters a culture of quality assurance but also promotes the long-term
maintainability, scalability, and sustainability of software projects. However, the endeavour
of unit testing is not without its challenges, as the painstaking crafting and execution of test
cases can require considerable time and effort. Developers must navigate the delicate balance
between thoroughness and efficiency, striving to achieve adequate test coverage without unduly
impeding the pace of development. Nonetheless, the benefits accrued from diligent unit test-
ing, in terms of improved software reliability, reduced defect density, and enhanced developer

productivity, underscore its indispensable role within the software engineering paradigm.

2.3 Unit Test Quality Metrics

Several metrics and measurements are employed to gauge the adequacy, effectiveness, and

comprehensiveness of unit testing efforts.

2.3.1 Code Coverage

One commonly used metric is code coverage, which quantifies the extent to which the source
code of a software system is exercised by the unit tests. Code coverage metrics, such as state-
ment coverage, branch coverage, and path coverage, provide insights into the proportion of code
paths and logic branches that are traversed during testing.

1. Statement Coverage: Statement coverage measures the proportion of executable
statements within the source code that are executed during the execution of the unit tests.

It tracks whether each individual line of code has been executed at least once during testing.

Statement coverage is a basic metric that indicates the overall reach of the test suite in terms of
executing different code paths and identifying potential defects. However, it does not account
for all possible control flow paths within the code.

2. Branch Coverage: Branch coverage extends the concept of statement coverage by con-
sidering the execution of conditional branches and decision points within the code. It measures
the percentage of decision outcomes or branches that are exercised by the unit tests. Branch
coverage provides a more comprehensive assessment of test coverage compared to statement
coverage, as it evaluates the testing of different logical conditions and control flow paths within
the code. Achieving high branch coverage indicates that the unit tests are effective in evaluating
the various decision points and logic branches present in the code base.

3. Line Coverage: Line coverage is similar to statement coverage but focuses specifically
on the percentage of lines of code that are executed during testing. It considers each line of
code, including comments and white space, and determines whether it has been executed by
the unit tests. While line coverage provides a detailed view of code execution at the line level,
it may not necessarily capture all control flow paths or decision points within the code base.
Nonetheless, it serves as a useful metric for assessing the overall completeness and thoroughness
of the test suite in terms of code execution.

While high code coverage does not guarantee the absence of defects, it serves as a useful
indicator of the thoroughness of test coverage and identifies areas of the code base that require

additional testing scrutiny.

2.3.2 Mutation Score

Another important metric is mutation score, which assesses the effectiveness of unit tests in
detecting changes, or mutations, made to the source code. Mutation testing involves introducing
small modifications, or mutations, to the code base and then running the unit tests to determine
if they can detect these alterations. The mutation score reflects the percentage of mutations
that are successfully detected by the test suite. A high mutation score indicates robust test
coverage and suggests that the unit tests are adept at identifying potential defects introduced

through code changes.

2.3.3 Fault Detection Rate

Furthermore, fault detection rate is a metric used to measure the efficacy of unit tests in

uncovering faults or defects within the software. It quantifies the proportion of known defects

that are detected by the unit tests during testing. By comparing the number of defects identified
by unit tests against the total number of defects present in the code base, developers can assess
the fault detection capability of the test suite and prioritize efforts to improve test coverage in

areas with higher defect density.

2.3.4 Test Suite Maintainability Metrics

Additionally, test suite maintainability metrics, such as test readability, test modularity, and
test fragility, provide insights into the ease of maintaining and evolving the unit tests over
time. Well-structured and maintainable unit tests are essential for facilitating ongoing devel-
opment activities, promoting code refactoring, and accommodating changes to the software

requirements or design.

2.4 Unit Test Automation

As the complexity of software systems and the meticulous nature of manual unit testing has
increased over time, the need for efficient and scalable testing solutions has become paramount.
Extensive research has been put into automatic test generation using techniques such as fuzzing [17] [39],
mutative search-based techniques [13] [28], feedback-directed random test generation [41] [40],
dynamic symbolic execution [18] [8] and hybrid techniques. In this section, we delve into the
evolution of unit test automation tools, with a particular focus on Java, taking a particular

interest in search based automation techniques.

2.4.1 Early Approaches to Unit Testing

The concept of unit testing dates back several decades, with early pioneers such as Kent Beck
and Ward Cunningham advocating for the practice in the 1980s and 1990s. Initially, unit tests
were written manually by developers, often as part of informal testing procedures. However, as
software projects grew in size and complexity, manual testing became impractical, necessitating

the automation of unit testing processes.

2.4.2 Introduction of JUnit

In the late 1990s, JUnit emerged as a groundbreaking framework for automating unit tests in
Java. Developed by Kent Beck and Erich Gamma, JUnit introduced a simple yet powerful

framework for writing and executing unit tests within the Java environment. By providing a

standardised approach to test organisation, assertion management, and test execution, JUnit
revolutionised the way Java developers approached unit testing. Its influence extended far
beyond the Java ecosystem, inspiring the creation of similar frameworks in other programming

languages such as CppUnit for C++, PyUnit for Python and Nunit for .NET.

2.4.3 Advancements in Test Automation Tools

Following the success of JUnit, the landscape of unit test automation continued to evolve
rapidly. Within the domain of Java, a multitude of automated unit testing tools have been
developed, each aimed at refining the testing process and enhancing software quality such as
Evosuite, Randoop, T3, JCrasher and AgitarOne to name a few. Among these tools, Ran-
doop stood out as one of the early pioneers, employing techniques to delve into Java program
behaviour through feedback-directed random testing. This methodology dynamically analyses
feedback gathered from prior test runs to steer the generation of subsequent test cases, ensuring
a thorough exploration of the program’s functionality. In a similar vein, T3 (Test Template
Toolkit) adopts a template-based synthesis approach to automatically create unit tests for Java
classes. By allowing users to either specify or infer properties of the code, T3 facilitates for
the systematic generation of tests tailored to the intricacies of the codebase. Contrasting T3,
JCrasher ventures into test case generation by traversing the input domain of the program
under test (PUT) utilising random and semi-random strategies. This process yields test suites
that encompass diverse scenarios, encompassing edge cases and error conditions crucial for com-
prehensive testing. Concurrently, commercial offerings such as AgitarOne, previously known as
Agitator, provide sophisticated automated unit testing capabilities for Java. This diverse array
of automated testing tools collectively contributes to the refinement of software testing prac-
tices, in the next section we will taking a closer look at search-based approaches, a precursor to
the discussion on advanced solutions like EvoSuite, which marks the segue into our exploration

of Large Language Models for unit testing.

2.4.4 The Rise of Evolutionary Testing Approaches

Search Based Software Engineering (SBSE) techniques [21] have been employed in a vast array
of tasks such as requirements optimisation, project planning and maintenance [33] [12] [58].
One area that they have proved to be particularly useful is software testing. Search-Based
Software Testing (SBST) harnesses the power of evolutionary search algorithms to enhance the

effectiveness of test case generation and optimisation [55]. It’s approach defines software testing

10

as a optimisation problem [42] [43]. At its core, SBST employs genetic algorithms to iteratively
evolve and mutate test cases over successive generations, aiming to maximise code coverage
and defect detection. Various studies in the past have shown that SBST is more effective for
identifying code defects than more traditional test generation techniques [15] [59]. Many SBST
tools exist in Java [40] [11] [3] with the most popular and effective being EvoSuite [13] [5], which
we will be using for our evaluation.

EvoSuite stands out as a pioneering approach to automated test generation, particularly
for Java applications. Developed by researchers at the University of Luxembourg, EvoSuite
employs these SBST approaches to automatically generate unit tests that achieve high code
coverage and detect potential faults in the software [16], taking a fundamentally different
approach to other previous tools like Randoop. By harnessing the power of genetic algorithms
and search-based techniques, EvoSuite addresses the limitations of traditional test generation
methods and offers a scalable and efficient approach to unit test automation, achieving higher
coverage and mutation scores than previous approaches.

EvoSuite revolutionised the automated test generation process, offering a scalable and effi-
cient approach to unit test automation. Its ability to generate high-quality test cases quickly
and effectively has made EvoSuite a valuable tool for Java developers seeking to enhance the
reliability and robustness of their software applications.

However, while current automated testing frameworks such as Evosuite have made strides
in streamlining the generation and execution of test cases, they have inherent limitations which
have prompted a search for more advanced solutions. One key limitation is that these auto-
mated test generation tools often require a reference implementation to compute oracles for
the generated inputs [31]. Additionally, studies have highlighted issues with the quality of the
test code generated by these tools, with evaluations showing the presence of suboptimal design
choices, known as test smells, in the automatically generated unit test classes, such as in the
case of Evosuite and Randoop which suffer Assert Roulette and Eager Test smells [20]. In
addition, research has also shown that while tools like Evosuite are used for automated unit
test generation, there are challenges in how well the generated test suites perform at detecting
actual faults in software systems [48]. The influence of automatically generated unit tests on
software maintenance has also been another topic of investigation, indicating that the choice of

traditional automation tools can impact the effectiveness of software maintenance activities [49].

11

2.5 Large Language Models

In light of the identified limitations, there is a growing interest in employing deep learning based
code generation techniques to enhance the creation of more effective unit tests, particularly
using transformer-based models. Large Language Models (LLMs) have witnessed a recent surge
in popularity, showcasing their proficiency across diverse tasks including but not limited to
text generation, text summarisation, image generation, and code generation [7] [29] [30]. Large
Language Models are characterised by their extensive neural architectures, typically composed
of millions or even billions of parameters, enabling them to capture long-range dependencies
and generalise well to different tasks.

Large Language Models (LLMs) represent a significant advancement in artificial intelli-
gence and natural language processing. These models, such as OpenAl’s GPT (Generative
Pre-trained Transformer) series, are trained on vast amounts of text data and employ deep
learning techniques to understand and generate human-like text. At the core of LLMs lie
transformer architectures, which enable them to process and generate text by attending to
contextual information across long sequences of words. This process involves multiple layers of
self-attention mechanisms, where the model learns to assign different weights to input tokens
based on their relevance to each other within the context of the sequence. Through extensive
pre-training on diverse text corpora, LLMs acquire a broad understanding of language seman-
tics, syntax, and pragmatics, enabling them to generate coherent and contextually relevant text
across a wide range of topics and domains.

The versatility and sophistication of LLMs have led to various applications across differ-
ent fields, including natural language understanding, text generation, machine translation, and
more. In the context of software engineering, LLMs offer promising opportunities for automat-
ing various tasks, including code generation, code completion, code summarization, and even
code testing. By leveraging their language understanding capabilities, LLMs can analyse and
comprehend software artifacts, such as code snippets, documentation, and requirements speci-
fications, to assist developers in their coding and testing efforts.

Several large language models have garnered attention for their potential applications in
test generation. The now discontinued Codex [7], for instance, is renowned for its program-
ming proficiency, as it was fine-tuned on a massive codebase. This specialisation makes Codex
particularly adept at understanding and generating code-related content. On the other hand,
models like BART (Bidirectional and Auto-Regressive Transformers) [18] excel in tasks involv-

ing sequence-to-sequence learning, making them valuable for tasks such as text summarisation

12

and paraphrasing. BART’s specific architecture and pre-training objectives contribute to its
effectiveness in these particular applications.

When comparing these alternatives with gpt-3.5-turbo, differences emerge in terms of train-
ing data, architecture, and fine-tuning objectives. gpt-3.5-turbo, as a variant of the gpt series,
has been trained on diverse datasets covering a wide range of tasks, providing it with a broad
understanding of language. Its architecture allows it to generate contextually relevant and

coherent text across various domains.

2.5.1 Fine Tuning

Fine-tuning a large language model involves retraining the model on a specific dataset or task to
adapt its parameters and representations for specialised domains or applications. This process
typically involves initialising the pre-trained model with weights learned from a large corpus of
general text data and fine-tuning it on a smaller, task-specific dataset through gradient-based
optimisation techniques. Fine-tuning a large language model on domain-specific data allows
the tailoring of its capabilities to better suit the nuances and intricacies of software-related

tasks.

13

Chapter 3

Related Works

In laying the groundwork for a comprehensive understanding of this project’s scope and ob-
jectives, it is imperative to embark on an exploration of the prior research that has paved the
way for the integration of Large Language Models (LLMs) in the domain of automated unit
testing. This can provide a crucial backdrop, offering insights into the evolution of automated
testing methodologies and the specific challenges that have propelled the exploration of LLMs
in this context. This section aims to do just this through an analysis of empirical evaluations,
comparative studies, and theoretical published works. But first, we will look deeper into the

workings of Evosuite, and look at a large scale study of the tool’s effectiveness.

3.1 An Evaluation of Evosuite

Evosuite is an automated unit test generation tool designed for Java programs. It utilizes
evolutionary computation techniques, specifically genetic algorithms, to automatically generate
unit tests. First introduced by Gordon Fraser and Andrea Arcuri in the paper Fraser et al.
2011 [13], the overarching goal of EvoSuite is to create comprehensive test suites that achieve
high code coverage and effectively detect potential faults in the software under test.

The process of test generation in EvoSuite unfolds through a series of key stages. Initially,
EvoSuite initializes a population of test suites, each containing a collection of test cases. These
initial test suites can either be randomly generated or seeded with preliminary knowledge about
the program under test. Following initialization, each test suite in the population undergoes
fitness evaluation, where its effectiveness is assessed based on code coverage metrics such as

branch or statement coverage. The overarching goal of EvoSuite is to maximize coverage while

14

minimizing redundancy in the generated tests.

Subsequently, test suites with higher fitness scores are selected to advance to the next
generation, employing selection mechanisms inspired by principles of natural selection, such
as tournament or roulette wheel selection[27][30]. Selected test suites then undergo genetic
operations including crossover and mutation to produce offspring for the subsequent generation.
Crossover involves combining elements of parent test suites to create new test cases, while
mutation introduces random changes to explore new areas of the search space. These offspring
test suites replace less fit individuals in the population, ensuring that only the fittest individuals
propagate to subsequent generations.

The evolutionary process continues for a predefined number of generations or until a termi-
nation condition is met, such as reaching a target coverage threshold or exhausting computa-
tional resources. Throughout this iterative process, EvoSuite dynamically adapts and refines
test suites based on feedback obtained from evaluating their fitness against the code under test.
By systematically exploring the space of possible test cases, EvoSuite generates effective unit
tests that provide thorough coverage of the program’s functionality. This automation facilitates
the swift creation of high-quality unit tests for Java programs, ultimately enhancing software
reliability and reducing the likelihood of defects in production code

The research paper Fraser et al. 2014 [16] presents an extensive evaluation of EvoSuite’s
automated unit test generation capabilities, focusing on branch coverage metrics and envi-
ronmental dependencies across a diverse set of software systems. Utilizing the SF110 corpus,
consisting of 110 open source projects, the study conducts empirical assessments to analyze
EvoSuite’s effectiveness in achieving branch coverage. The experiment encompasses various
software artifacts, including open source, industrial, and automatically generated projects. Evo-
Suite demonstrates promising results, achieving an average branch coverage of 71% across the
entire SF110 corpus. However, detailed analysis reveals variations in coverage levels based on
the nature of software artifacts. For instance, classes without unsafe operations exhibit higher
coverage rates, averaging at 84%, while classes involving network sockets demonstrate lower
coverage, as low as 51%. This highlights the impact of environmental interactions on test out-
comes and underscores the need for systematic artifact selection in empirical studies to ensure
meaningful evaluations.

Methodologically, the study employs EvoSuite on the SF110 corpus and additional indus-
trial systems to evaluate its performance. The experiment rigorously assesses branch coverage

achieved by EvoSuite, providing quantitative insights into its effectiveness as an automated

15

testing tool. By systematically examining the practical implications of software artifact selec-
tion, the study elucidates the complexities and limitations associated with experimental design
in empirical research. Moreover, the paper discusses challenges related to evaluating software
artifacts and emphasizes the importance of clear and systematic selection criteria. Through
numerical metrics and empirical analysis, the research contributes valuable insights into Evo-
Suite’s capabilities in generating unit tests and highlights the critical role of environmental
dependencies in test outcomes. These findings underscore the significance of thoughtful ar-
tifact selection in empirical studies, aiming to minimize biases and enhance the validity of

research outcomes in software engineering.

3.2 Evaluations on Large Language Models

Some preliminary efforts have been made to utilize LLMs in the generation of unit tests. The
study Siddiq et al. 2023 [50] provides a comprehensive examination of the capabilities of large
language models (LLMs) in generating unit tests, evaluating three prominent LLMs: ChatGPT-
3.5 [34], Codex [10], and CodeGen [32]. Through systematic experimentation on datasets from
the Multilingual HumanEval [7] and Evosuite SF110 [14] benchmarks, the study rigorously
examines various facets of LLM-generated unit tests, including compilation rates, test correct-
ness, coverage metrics, and the prevalence of test smells. Employing a structured approach,
the research conducts data collection, unit test generation, and an evaluation, illustrating both
the potential and limitations of LLMs for this task. They focused on two primary research
questions - the proficiency of LLMs in generating unit tests and the influence of the inclusion
of various code elements in the context on LLM performance - the findings underscore the
complexities inherent in natural language understanding and code synthesis tasks, providing
valuable insights for future research endeavours in Al-driven software engineering tools.

In their study, the authors meticulously collected data from the HumanEval and SF110
datasets, applying stringent criteria to select testable methods. For the SF110 dataset in par-
ticular, they applied inclusion and exclusion criteria for the selection of testable methods by
filtering classes based on visibility and method characteristics, obtaining a subset of methods
under test (MUTS) from a diverse range of projects. However, the collected data, comprising
only 411 MUTs from 194 classes across 47 projects, reflects a relatively small-scale assessment
within the expansive SF110 dataset (which contains 23,886 classes, with over 800,000 byte-code
level branches and 6.6 million lines of code). In contrast, this report aims for a larger-scale

evaluation, aiming to generate a test class for each testable class within a project in the SF110

16

dataset, similar to how Evosuite does it. Moreover, while the authors did not prompt the LLMs
to fix compilation errors directly, resorting instead to heuristic fixes, my study seeks to address
compilation errors by re-prompting the LLMs, thereby enhancing the robustness of the gener-
ated unit tests. Additionally, while the authors evaluated LLMs using a multilingual dataset
encompassing problems in various programming languages, this study focuses solely on Java,
thereby providing a more targeted evaluation within a specific programming context. These
differences underscore distinct methodological approaches and research objectives, highlighting
the unique contributions and considerations of each study.

None the less, this paper’s study findings shed light on the performance of LLMs in gen-
erating unit tests across multiple dimensions. Notably, Codex, which is trained on a large
codebase, emerged as the best performing model in terms of compilation rates. Before heuris-
tics, Codex exhibited the highest compilation rates across both the HumanEval and SF100
datasets, surpassing other LLMs by a significant margin. Furthermore, Codex demonstrated
superior correctness rates compared to ChatGPT and CodeGen, indicating its efficacy in pro-
ducing more accurate unit tests. While the three LLMs are inherently different, these results
indicate that further training a LLM can improve its performance, given that Codex was trained
on a large codebase unlike the other two LLMs. However, despite Codex’s performance advan-
tages, all LLMs struggled to achieve high coverage metrics, with line and branch coverage rates
considerably lower than manually authored tests and those generated by Evosuite. Addition-
ally, the prevalence of test smells, such as Assertion Roulette and Empty Tests, underscored
the challenges associated with ensuring the quality of LLM-generated unit tests. These find-
ings highlight both the potential and limitations of leveraging LLMs for unit test generation
tasks and provide valuable insights for future research directions in Al-driven software testing
methodologies.

Another paper Schafer et al. 2023 [47] conducted a similar evaluation, on gpt-3.5-turbo[34],
code-cushman-002[35] and StarCoder[22] in generating Javascript test cases without requiring
any additional training. Their approach involved providing the LLMs with prompts containing
the signature and implementation of the function under test, along with usage examples ex-
tracted from documentation, and, in case of test failure, generating a new test by re-prompting
the model with the failing test and error message. Comparing their results with Nessie [6], a
feedback-directed Javascript test generation technique, the study evaluated its performance on
25 npm packages with a total of 1,684 API functions.

Overall, their results showed that the LLM-based testing techniques outperformed Nessie,

17

with the generated tests achieve significant coverage metrics, with a median statement coverage
of 70.2% and branch coverage of 52.8%. In comparison, the state-of-the-art feedback-directed
JavaScript test generation technique, Nessie, lags behind with only 51.3% statement coverage
and 25.6% branch coverage. Notably, their evaluation also indicated that gpt-3.5-turbo outper-
formed the other LLMs with StarCoder (the smallest LLM) performing worst out of the bunch
which in their words suggests that the effectiveness of the approach is influenced by the size
and training set of the LLM, but does not fundamentally depend on the specific model. Among
their evaluations was the assessment of the characteristic properties of the failing tests. Their
results concluded that of a large amount of the failing tests were caused by correctness errors
such as type, assertion, syntax and reference errors, as well as incorrect invocations and infinite
recursions, a similar occurrence to Siddiq et al. 2023 [50].

The study conducted by Yu et al. 2023 [57] further delves into the utilisation of Large
Language Models (LLMs), specifically employing ChatGPT as a representative, to address
challenges within mobile application test script generation and migration. Their research aims
to comprehensively investigate the capabilities and limitations of LLLMs in this context. They
observed that LLMs demonstrate proficiency in grasping the business logic of the Application
Under Test (AUT) and dynamically adjusting the generation process based on the current
state of the AUT. However, they also identified significant limitations, including issues related
to context memory, API usage randomness, and the substantial human effort required to refine
generated test cases. Their findings underscore the nuanced landscape of LLM-driven test
automation, highlighting both the potential benefits and practical challenges associated with
its application in the realm of mobile application testing and migration.

In contrast to the Yu et al. 2023 [57] and Schafer et al. 2023 [47] studies, my research
focuses on a distinct domain within software testing, specifically Java unit testing, leveraging
LLM technology. While all three studies share the common thread of exploring the capabilities
of LLMs, my work diverges in terms of the application domain, methodology, and objectives.
Whereas their study concentrates on mobile application testing and migration and within the
domain of Javascript testing, this study is centered on Java unit testing, offering a novel per-
spective within the broader spectrum of LLM-driven software testing research.

The findings from the three evaluations explored in this section collectively offer valuable
insights that can inform and enhance the methodology of this report in Java unit testing.
Firstly, the discovery that LLMs, particularly specialized ones like Codex or larger models like

ChatGPT, can effectively capture the business logic of a System Under Test (SUT) underscores

18

the potential of LLMs in generating meaningful and context-aware test cases. This finding sug-
gests that integrating LLMs into the test generation process can potentially overcome the limi
tations of other approaches like Evosuite, which may lack the ability to comprehend complex
system behaviors comprehensively. Additionally, the observation that the performance of LLMs
in test generation tasks varies based on factors such as size and specialization makes a case for
tailoring an LLM to the specific testing domain, as this may yield better results. Hence, this
study will the aim to leverage these insights to strategically select a LLM that is equipped with
larger parameters and specialise it for Java unit testing tasks. However, before we can make
a case for fine tuning, we must first explore prior studies that have evaluated LLMs against
Search Based Software Testing (SBST) techniques, which this report aims to do. We will do

this in the next section.

3.3 LLM vs SBST

Several papers have evaluated the effectiveness of Large Language Models against Search Based
Software Testing methodologies for Unit Testing purposes.

In the study conducted by Yutian et al. 2023 [53], a systematic comparison between test
suites generated by OpenAl’'s ChatGPT LLM[34] and the SBST tool EvoSuite[13] was under-
taken. The research aimed to evaluate critical factors such as correctness, readability, code
coverage, and bug detection capability of the generated test suites.

In terms of methodology, the study by Yutian et al. (2023) involved a comprehensive eval-
uation process across a diverse set of Java programs. They conducted their evaluation on the
DynaMOSA benchmark containing 346 Java classes sampled from 4 different datasets span-
ning 117 Java projects. Their evaluation methodology included assessing whether ChatGPT-
generated test cases successfully compiled and executed, as well as analysing bug priority levels
and patterns within the generated test suites. Additionally, the study utilized JaCoCo to mea-
sure instruction and branch coverage, allowing for a detailed comparison between the code
coverage achieved by ChatGPT and EvoSuite.

Notably, their findings revealed that EvoSuite outperformed ChatGPT in terms of code
coverage by 19%. To assess the adherence of ChatGPT-generated test cases to coding style
conventions, the authors employed the state-of-the-art software quality tool CheckStyle. Their
evaluation results indicated that ChatGPT does not have a specific code style that it consis-
tently follows when generating test cases.

In their study, the researchers crafted a prompt by analysing phrases used in various tools

19

leveraging LLMSs and verifying them with ChatGPT. This process involved collecting phrases
from sources such as Google, Google Scholar, GitHub, and technical blogs, and then refining
them. Ultimately, they combined three representative expressions into a single prompt: "Write
a JUnit test case to cover methods in the following code (one test case for each method):
$input?”. Notably, the researchers clarified that their goal was not to create the best-performing
prompt but rather to establish a reasonable one for ChatGPT usage in practical scenarios.

In contrast, beyond the divergence in fine-tuning a LLM, this report also intends to diverge
in terms of its approach to prompt generation. While they derived their prompt from existing
sources on the internet, this report aims to generate test cases using a default prompt and then
refine it through prompt engineering. By learning from the generated tests, it seek to iteratively
improve and optimise the prompt for better performance. This distinction underscores differing
methodologies between the two studies.

In Lemieux et al. 2023 [25], the researchers proposed a hybrid technique called CO-
DAMOSA, which combines Large Language Models (LLMs), particularly OpenATl’s Codex,
with Search-Based Software Testing (SBST). The algorithm, evaluated over 486 benchmarks,
aims to enhance coverage in automated test case generation. The approach monitors SBST’s
coverage progress and, upon stalling, utilises Codex to generate example test cases for undis-
covered functions, thereby guiding SBST to more productive areas of the search space. The
evaluation revealed that CODAMOSA achieved statistically and significantly higher coverage
on numerous benchmarks compared to SBST and LLM-only baselines. Through a detailed in-
vestigation, Lemieux et al. 2023 addressed several research questions, including the comparison
of CODAMOSA to baselines, the impact of design decisions on test effectiveness, qualitative
analysis of coverage results, and the similarity of Codex-generated tests to out-of-prompt code.
Notably, the tool was evaluated over 486 benchmarks and showed that CODAMOSA outper-
formed the SBST and LLM-only baselines on a significant portion of benchmarks, indicating its
effectiveness in improving coverage. Additionally, design decisions such as uninterpreted state-
ments, Codex hyper-parameters, low-coverage targeting, and prompting strategies were found
to influence test effectiveness, with sampling Codex at a higher temperature showing consis-
tently positive effects. Furthermore, case studies highlighted the importance of special strings
and backup callables in contributing to coverage improvement, while an assessment of Codex-
generated tests revealed their dissimilarity to out-of-prompt code, suggesting CODAMOSA’s
robustness across diverse scenarios.

In the next section, we will take a look at studies that have evaluated fine tuned Large

20

Language Models for the task of unit test generation.

3.4 Evaluations on Fined Tuned Models

In the Tufano et al. 2020 [56] paper, the authors present ATHENATEST, an automated
approach for generating unit test cases by leveraging sequence-to-sequence learning with the
BART transformer model [26]. The methodology involves a two-step training process: denoising
pretraining on large unsupervised English and Java corpora, followed by supervised fine-tuning
for the downstream task of generating unit tests on the METHODS2TEST data set [29]. Us-
ing this approach, ATHENATEST is capable of producing thousands of syntactically correct,
compilable, and effective test cases for Defects4j projects, invoking various testing APIs. The
generated test cases demonstrate comparable test coverage to EvoSuite and are preferred by
professional developers due to their realism, accuracy in asserting expected behaviour, and
human-readable code structure according to their study.

The experimental design encompasses several research questions aimed at assessing the per-
formance and effectiveness of ATHENATEST. Through rigorous evaluations, the authors inves-
tigate the impact of model pretraining, focal context selection, and test case quality analysis.
The results indicate that pretraining the model on both English and Java corpora significantly
enhances its performance in generating unit test cases. Moreover, incorporating additional
focal context beyond the focal method such as focal class signature, method signatures and
package declarations leads to improvements in model training and test case generation qual-
ity. ATHENATEST demonstrates its capability to generate correct and effective test cases for
Defectsdj projects, outperforming alternative approaches like EvoSuite and GPT-3 in terms
of test coverage and developer preference. Overall, ATHENATEST presents a promising so-
lution, offering realistic, accurate, and human-readable test cases that align with developers’
expectations and preferences.

Other papers have sought to fine tune LLMs for assertion generation in order to achieve bet-
ter results. For example, Alagarsamy et al. 2023 [4] motivated by ATHENATEST, proposed
A3Test, which augmented by assertion knowledge with a mechanism to verify naming consis-
tency and test signatures, leverages domain adaptation principles to adapt existing knowledge
from assertion generation to the test case generation task. The paper presented results com-
paring A3Test with the baseline approach, ATHENATEST, using the Defects4j data set [24].
A3Test achieves 147

In contrast to ATHENATEST, which focuses on generating unit tests at the method level,

21

this report diverges by aiming to generate tests for entire focal classes. While ATHENATEST
adopts a sequence-to-sequence transformer model, specifically the BART model, this study uti-
lizes the more expansive gpt-3.5-turbo model. Notably, the gpt-3.5-turbo model is substantially
larger and more powerful compared to BART, potentially offering enhanced capabilities. Fur-
thermore, unlike ATHENATEST, which undergoes pretraining on English and Java corpora,
this report foregoes such pretraining steps, as the gpt-3.5-turbo model does not necessitate
this additional training. Consequently, by leveraging gpt-3.5-turbo and focusing on entire focal
classes rather than individual methods, this study seeks to explore an alternative avenue for
automated test case generation with the potential for broader applicability and effectiveness in

software testing practices.

3.5 Wrap up

In concluding this comprehensive exploration of prior works, we delved into several evaluations
and studies that employed LLMs in the realm of unit test generation. Despite initial promise,
scrutiny of LLMs’ performance in the investigated works underscores their tendency to pro-
duce syntactically and logically incorrect test cases, and often performing poorer that SBST
approaches in terms of coverage. We also discussed the distinctions between the various studies
and this report, highlighting the alternative avenues in which this report aims to explore. In
short, none of the evaluations, aimed to generate a project level test suite using a fine tuned
LLM that is prompted to generate tests for entire focal class at a time. The next chapter

defines the requirements of this project in more detail.

22

Chapter 4

Requirements

This section lists the requirements that govern the development of the deliverables of this
project. The successful completion of this project aims to evaluate a fine-tuned gpt-3.5-turbo
model for the task of unit test generation in Java, comparing its tests against those generated

by an ordinary gpt-3.5-turbo model, Evosuite as well as manually authored tests.

4.1 Functional Requirements

Functional requirements enumerate the functionalities that the system must implement. This
includes functionalities that the model, parser, or user interface should be able to execute.

These are as follows:
1. The generated tests should be able to compile without throwing any errors
2. The generated tests should be able to run
3. The generated tests should be achieve high coverage
2. The Model should be able to be prompted through API calls

3. The Model should be able to generate and return several test cases when prompted with

a class

4. The Parser should be able to find additional contextual information in the source code
harbouring the class. This includes class signatures, method signatures, class properties,

package declarations etc.

5. The Reprompter shoulld be able to

23

4.2 Non-functional Requirements
Non-functional requirements are formulated to uphold the overall quality of the system:

1. Code Style - The generated tests should follow a concise coding style. In other words,
they should be well documented, and neatly written. Classes and methods should have

appropriate names.

2. Reliability - The system should be designed to handle and recover well from errors, provid-
ing informative error messages to users. The trained model should demonstrate stability,

generating consistent and reliable test cases across different APT calls.

3. Usability - The GUI should provide an intuitive and user-friendly experience, with clear

instruction and guides on how to generate tests.

4. Maintainability - The system should be designed with modular components, facilitating

updates and maintenance.

5. Ethical Considerations - Develop and implement guidelines for the ethical use of the

trained model, including considerations related to bias and fairness in test case generation.

24

Chapter 5

Design & Specification

5.1 Overview

In this section we delve into the design specifications that need to be implemented, serving
as a comprehensive roadmap that details the approaches necessary to fulfill the requirements
outlined in the previous chapter effectively. The design of this project is divided into two
stages, the fine tuning stage and the evaluation. Before delving into the detailed design of
each stage, we must first establish a foundational understanding of the preliminary choices and

prerequisites that inform our approach.

5.1.1 Programming Language

As previously stated, the unit tests will be generated in the Java programming language. The
decision to generate unit tests in the Java is primarily motivated by strategic considerations.
Firstly, Java has been extensively utilized in prior research endeavours within the domain of
unit test generation. Moreover, it’s notable that the majority of Search-Based Software Testing
(SBST) techniques rely on the Java programming language. Additionally, Java is renowned
for its robustness, static typing, and clear, rigorous syntax, offering distinct advantages for
both the generation and evaluation of test cases. The language’s rigorous structure requires
generated tests to adhere closely to coding conventions, thereby enhancing the readability
and understandability of the generated tests. Furthermore, Java’s static typing characteristic
provides a well-defined structure to the code, facilitating precise evaluation metrics and ensuring
adherence to the language’s stringent typing rules. These characteristics collectively position

Java as an optimal choice for the unit test generation using a LLM, offering a controlled

25

environment for precise evaluation and fostering the generation of high-quality and syntactically

accurate test cases.

5.1.2 Large Language Model

The selection of gpt-3.5-turbo as the underlying model is primarily driven by two significant
factors. Firstly, gpt-3.5-turbo has been extensively utilized in prior research within the field.
This extensive usage underscores its reliability and effectiveness in various natural language
processing tasks, including unit test generation. Secondly, gpt-3.5-turbo enjoys widespread
popularity worldwide, with over 180 million users, solidifying its position as an industry-leading
Large Language Model (LLM). Additionally, the model possesses a formidable architecture,
boasting an impressive 175 billion parameters, further enhances its capabilities. This expansive
design not only signifies its state-of-the-art capabilities but also positions it as a formidable
candidate for capturing intricate language and code nuances. The sheer scale of its parameters
grants gpt-3.5-turbo an unprecedented ability to understand and generate contextually rich and

coherent text across diverse domains, including the complex landscape of unit test scenarios.

5.2 Fine Tuning

The initial phase of this project entails the fine-tuning of the gpt-3.5-turbo model to address
the specific requirements of the task at hand. The fine-tuning stage is structured into three

distinct phases:
1. Data Collection
2. Data Preparation

3. Fine Tuning

5.2.1 Data Collection

The data collection stage involves the extraction of high-quality test classes and their corre-
sponding focal classes. In this context, a focal class represents the entity or component within
a software project that a test aims to assess or verify, and typically encapsulates a specific
module or class within the codebase. The collected test and focal class pairs will be selected
from open source Java repositories on GitHub, adhering strictly to an open-source framework

and governed by the Apache License, Version 2.0[1] or the GNU General Public License[2].

26

To ensure the collection of high quality data, the selection process prioritises repositories
with the highest degree of community validation, only considering those that are among the
most starred on Github. Following these guidelines, five repositories were chosen, and an
additional supplementary project containing implementations of data structures and algorithms

in Java was augmented. These projects are listed below:

1. Rxjava [46] (47.6k stars) RXJava is a library for asynchronous and event-based program-

ming using observable sequences/streams.

2. Retrofit [52] (42.6k stars) Retrofit is a type-safe HTTP client for Android and Java by

Square, Inc.

3. Springboot [45] (72.5k stars) Spring Boot makes it easy to create Spring-powered, production-

grade applications and services with absolute minimum fuss.

4. Spring-Framework [51] (54.9k stars) Spring provides everything you need beyond the Java

language to create enterprise applications in a wide range of scenarios and architectures.

5. Google Guava [23] (49.3k stars) This is a set of core libraries from Google that include

collections, caching, primitives support, concurrency libraries, and more

6. TheAlgorithms [54] (56.4 stars) An educational repository contained implementations of

data structures and algorithms in Java

For each selected project, the data collection strategy revolves around parsing the source
and test directories to identify test classes and their respective focal classes. Test and focal
classes will be matched in accordance with Java naming conventions, where test classes are
named by suffixing the name of the focal class with "Test”. For instance, a focal class named
"ExampleClass” would be paired with a test class named "ExampleClassTest”. Given that it is
also a contention that files are named after the classes that they contain, the same is true for
file names too.

It is worth noting that while every test class must have a focal class, not all focal classes
must have a corresponding test class. Therefore, the focus will be on identifying test classes

and finding their corresponding focal classes.

5.2.2 Data Preparation

Before the model can be trained on the data, it needs to be processed into a suitable format.

OpenAT’s documentation [36] specifies that the data must be formatted in a conversational chat

27

style in JSONL format. Each example in the dataset should resemble a conversation, structured
as a list of messages where each message has a role, content, and optional name.There are three
roles, the system role represents information providing default or initial context to guide the
conversation. The user role signifies messages sent by the user, typically prompting the model
to perform a specific task or action. Conversely, the assistant role denotes responses generated
by the model itself, providing solutions or answers to the user’s prompts.

During this stage, we will structure each mapping in the collected data into a default format
so that there are two messages: one representing the user, prompting the model to generate
a test case for the focal method, and the other representing the assistant, which provides the

correct test case. An example of this formatting is provided below:

{

"messages”: |
{"role”: 7system”, ”content”: "You are a proficient Java developer”},
{"role”: "user”, 7content”: ”*PROMPT* <<FOCAL CLASS>>"},

{"role”: 7assistant”, ”content”: "<<TEST CLASS>>"}

Additionally, only collected pairs that are below the 16,345 token limit will be added to the
JSONL file. To manage this, a token counter is implemented using the tiktoken library. This
counter will also be utilized to calculate the total number of tokens in the training set and
estimate the associated cost.

Once each mapping in the collected data has been structured into the default format and
filtered based on token limit criteria, the entire formatted dataset will be compiled and organized
into a JSONL (JSON Lines) file. This file will serve as the standardized format for the training

data, suitable for subsequent fine-tuning stage.

5.2.3 Fine Tuning

Once the training set is prepared, the fine-tuning process of the model ensues following the
guidelines outlined in the documentation. The fine-tuning process commences by uploading
the formatted JSONL file to OpenAl’s platform using the Files API. This step initiates the
processing of the file and returns a training file ID. The file upload task can take several minutes,
and while it undergoes processing, subsequent actions such as creating a fine-tuning job on the

gpt-3.5-turbo model can be started. However, it’s imperative to note that the fine-tuning job

28

will commence only after the file processing is complete. Upon starting the fine-tuning job,
the model training process commences. For this project, the model will be trained over three
epochs. After the fine-tuning is concluded, a model ID and a fine-tuning job report is produced
and are available on the OpenAl platform. This report contains the training loss, trained

tokens, and other relevant statistics that were a result of the fine tuning of the model.

5.3 Evaluation

5.3.1 Overview

The evaluation stage serves as the second phase of this report, following the fine-tuning process.
In this stage, the performance of the fine-tuned model will be rigorously assessed on the widely

recognised SF110 EvoSuite dataset against three benchmarking approaches:
1. Evosuite, a search-based test generation suite for Java.
2. An untrained gpt-3.5-turbo model, serving as a baseline comparison.
3. Manually authored tests, representing conventional testing practices.

Prompt engineering techniques will be employed to optimise the setup for generating test
cases using the fine-tuned model. Furthermore, failing tests generated by both large language
models will be reprompted to address any errors that were thrown during their compilation.

The evaluation will involve an inspection of the characteristics of any errors generated by
the tests, providing insights into potential weaknesses or limitations of large language models.
After the handling of these failing errors, the tests generated by all four approaches will undergo

a comprehensive evaluation based on the following criteria:
1. Coverage
2. Test Correctness
3. Mutation Score

4. Readability

Before we proceed into the experimental design and setup, it is essential to delve into the
specifics of the dataset that will be used for the evaluation. The following subsection will provide
a comprehensive exploration of the SF110 dataset, laying the groundwork for the subsequent

experimental procedures.

29

5.3.2 The Evosuite SF110 Benchmark

As previously mentioned, the fine tuned model will be evaluatd on the SF110 benchmark. This
dataset, established by Evosuite, stands as a widely recognized benchmark for evaluating au-
tomated test generation techniques within the Java domain. Initially compiled and curated by
Fraser et al.(2012) [14], the dataset originated from a collection of 100 Java projects sourced
from SourceForge, a prominent open-source repository hosting over 300,000 projects and boast-
ing more than two million registered users. This compilation was later augmented with an
additional 10 more popular projects, resulting in the expanded corpus known as SF110. The
dataset’s inclusion of a myriad of Java projects, spanning from small-scale applications to large-
scale software systems, renders it an invaluable resource within the research community. Due
to this extensive coverage and popularity in previous research endeavours [16][50][53][25][56],
the SF110 benchmark has become a cornerstone in evaluating the effectiveness and efficiency
of various test generation approaches.

The SF110 benchmark dataset is known for its diversity, encompassing projects from differ-
ent domains and exhibiting varying characteristics in terms of size, complexity, and functional-
ity. This diversity makes it an ideal choice for evaluating the robustness and versatility of test
generation techniques across a broad spectrum of Java applications.

However, due to resource and budget constraints, the evaluation in this study will focus
on a subset of the SF110 benchmark, consisting of 32 projects carefully selected to maintain
diversity while ensuring feasibility of evaluation. The selected subset includes both large and
smaller-scale projects, ensuring representation across different project sizes and complexities.

The selected projects for this subset are as follows:

1. Tullibee 9. NekoMUD 17. openjms 25.

2. Rif 10. Saxpath 18. Ext4J 26.

3. Templatelt 11. JNI-InChI 19. To Project 27.

4. FalseLight 12. Xisemele 20. Wheel 28.

5. imSMART 13. PetSoar 21. JavAthena 29.

6. jdbacl 14. Follow 22. xBus 30.

7. Inspirento 15. Asphodel 23. T-Robots 31. sweethome3d
8. JSecurity 16. Lavalamp 24. HEAL 32. Weka

30

It’s important to note that all projects in the SF110 benchmark dataset were massaged
into a common Apache Ant build infrastructure to ensure consistency and reproducibility of
the evaluation process. This common build infrastructure will be further elucidated in the
subsequent subsection, providing insights into the preprocessing steps undertaken to prepare

the dataset for evaluation.

5.3.3 Apache Ant

Apache Ant is a Java-based build tool that primarily focuses on automating software build
processes. It serves as a popular choice for managing the build lifecycle of Java applications
along with Maven and Gradle, providing developers with a flexible framework for compiling,
testing, and deploying software projects. As an open-source tool maintained by the Apache
Software Foundation, Apache Ant is widely adopted within the Java development community,
and is the build tool of choice for the SF110 Dataset.

Apache Ant operates through the definition of build scripts, typically written in XML
format, which specify the sequence of tasks to be executed during the build process. These tasks
can include compiling source code, running tests, packaging binaries, and deploying artifacts
to name a few. Each task is encapsulated within a target element, which defines its name and
dependencies.

Understanding Apache Ant is pivotal for establishing a robust build infrastructure to handle
projects from the SF110 dataset effectively. The familiarity with build automation principles
provided by Apache Ant will facilitate the integration of these projects into the evaluation

framework, enabling seamless test generation and execution processes.

5.3.4 Evosuite Test Generation Setup

Evosuite determines which classes are testable by analyzing the bytecode of Java classes within
the Program Under Test. Classes that can be instantiated without causing exceptions are
considered testable, enabling Evosuite to focus its efforts on generating tests for these classes.
Within the evaluation dataset for this report, there are 3529 testable classes.

By default, Evosuite is configured with parameters and target criterion aimed at guiding
its test generation. These parameters include settings for test generation strategies, coverage
criteria, and search budgets. The default goals of Evosuite encompass objectives such as achiev-
ing high line and branch coverage, fault detection, and maximising diversity in generated test

cases.

31

However, due to resource constraints, particularly limited computational resources, test
generation with Evosuite needs to be constrained. To address this, a two-minute timeout per
test case will be imposed during test generation. Given that the evaluation dataset contains a
significant number of testable classes, optimising test generation efficiency is paramount.

Evosuite provides flexibility in how tests can be generated, offering options for command-
line usage or integration with build tools like Maven. Since the dataset employs Apache Ant
rather than Maven, tests will be generated using the command line for each project. This
involves targeting each project’s .jar file with Evosuite.

Utilizing Evosuite version 1.2.0, chosen for its compatibility with Java 11, the following

command will be used to initiate test generation:
java —jar evosuite —1.2.0.jar —target <<project—jar>>.jar —Dsearch_budget=120

-Dsearch_budget sets the time out for each test case generation to 2 minutes. The remaining
parameters, which are specified in an evosuite.properties file within each project, will be left to
their default values.

Upon completion, a new directory named ’evosuite-tests’ will be created within each project,
containing the generated tests. Each testable class generates two files: a test class file and a
scaffolding test class file, which are required to be able to execute the tests. Furthermore, an
‘evosuite-report’ directory is generated, housing a CSV file with statistics about the generated

tests.

5.3.5 LLM Test Generation Setup

The generation of test cases using the Language Model (LLM) entails a structured process
adhering to the requirements of OpenAl’s API. Each project within the dataset comprises a
'sr¢’ directory housing two essential subdirectories: 'main/java’, containing the primary source
code, and ’test/java’, housing human-authored tests designed for the primary source code. It
is imperative to clarify that the focus of test generation in this study will be on files located
within the 'main/java’ path using the models and the tests located in ‘test/java’ will be used

in the evaluation.

Test Directory Structure Creation

Initiating the test generation process involves the creation of a dedicated directory to store all
generated tests. In accordance with Java conventions, test directories should mirror the struc-

ture of the classes they aim to test. For instance, a Java class named 'ExampleClass’ within

32

the 'main/java/com/example’ directory should have its corresponding test class in ’test/java/-
com/example’, named 'ExampleClassTest’.

For clarity, consider the following illustrative example:

main/java/

L

com

L

example

L

ExampleClass. java

trained_tests/

L

com

L

example

L

ExampleClassTest.java

Tests generated by the fine-tuned model will be stored in a directory named ’trained_tests’,
while those from the ordinary model will reside in 'untrained_tests’. The generation process
entails parsing the source directory of each project, wherein for each ’java’ file encountered,
a corresponding ’java’ file is created within the test directory. The newly generated test file
mirrors the original file’s directory structure but resides within the test directory, and is named
after the original file but suffixed with ‘Test’ at the end of the name, as shown in the above

example where “ExampleClassTest.java” is derived from “ExampleClass.java’.

Prompting of the Models

As detailed in the data preparation subsection of the fine-tuning stage, OpenAl’s API requires
requests to be formatted in a conversational chat style using JSON format. Each request, struc-
tured as a conversation, comprises two messages: one from the system role providing contextual
guidance, and the other from the user role containing the prompt. To conform to these spec-
ifications, each file within the source directory with a ’java’ extension undergoes three steps.
Firstly, the code within the file is extracted, followed by the removal of extraneous metadata
comments (such as copyright declarations, authors etc.) to optimise token usage. Subsequently,
this extracted code is appended to a JSON conversational template to be prompted to the LLM,

as depicted below:

33

{

"messages”: |
{"role”: 7system”, ”content”: "You are a proficient Java developer”},
{"role”: "user”, ”content”: ”Generate a Java test class using

JUnit4 for the following Java class, reply with code only:

extracted code here”}

While prompt engineering techniques will be applied iteratively, this initial prompt serves
as the starting point. The JSON is then submitted via the OpenAI API, specifying the model
(either gpt-3.5-turbo or the ID returned from fine-tuning). The API response, structured as

ML

JSON data, is processed to extract the response text, typically enclosed within symbols.
Upon extraction, this code is written to its corresponding test file. This process is repeated for

all eligible Java files within the source directory, adhering to token constraints.

5.3.6 Error Analysis Setup

The Error Analysis Setup section delineates the meticulous process adopted to dissect errors
emanating from the compilation of test cases. This multifaceted procedure encompasses three
fundamental steps: Test Compilation and Logging, Error Extraction, and Statistics and Graph

Generation.

1. Test Compilation and Logging

To scrutinize the errors engendered by the test cases, the compilation process is instigated
through the Java compiler (’javac’). Within each project’s ‘build.xml file, two Apache Ant
tasks—mamely ‘compile-trained‘ and ‘compile-untrained‘—are appended. These tasks under-
take the compilation of the trained tests stored in the ‘trained_tests‘ directory and the untrained
tests in the ‘untrained_tests‘ directory, respectively.

The Apache Ant compilation tasks are executed programmatically leveraging Python’s ‘sub-
process* library to capture of standard output (stdout) during task execution. This is leveraged
in a ErrorLogger class which calls these tasks and captures the output produced during their
execution. This logging mechanism allows for the recording of any errors encountered during

the compilation process, which is pivotal for subsequent analysis. Below is the implementation

34

of the ErrorLogger class for the trained tests. The same implementation is replicated for the

untrained tests.

class ErrorLogger:
def log_compilation_errors(projects_directory):

projects = os.listdir (projects_directory)

for project in projects:
project_path = os.path.join(projects_directory , project)

command_trained = [’ant’, '—f’, project_path, ’compile—trained ’]

try:
subprocess.run(command_trained, check=True,
stdout=subprocess.PIPE, stderr=subprocess.PIPE,
universal _newlines=True)

except subprocess. CalledProcessError as e:

#If an error is thrown, log the standard output

project_path = os.path.join(projects_directory , project)
output_message = e.stdout if e.stdout is not None else "7

log (output_message, project_path){e}”)

def log (output, project_path):
file_name_trained = ’trained_compilation_errors.txt’

file_.path_trained = os.path.join(project_path, file_.name_trained)

with open(file_path_trained , 'w’) as file_trained:

file_trained . write (output)

2. Error Extraction

The subsequent step entails the extraction of errors from the logged standard output in the
text files. Conventionally, when an Ant task is executed, it adheres to a sequence of
dependencies. For ‘javac’ compilation tasks, errors are presented in a specific format,

encompassing attributes such as file path, line number, error type, and additional error

35

details. Below is an example of an error thrown in the terminal by the java compiler:

[javac]| /home/k21009059/Desktop/EvaluationProjects/5 templateit/untrained tests/org/templateit/DynamicTemplateTest. jav&i

|error: diamond operator is not supported in -source 6 | Error File path Line Number
Javac] Styles = new ArrayList<>();
[javac] ~
[javac] (use -source 7 or higher to enable diamond operator) | Additional information

An ‘ErrorFinder’ class is instantiated to parse the logged text files and extract errors using

a regex pattern shown below:
pattern = re.compile(r’\[javac\] ([:\n]+):(\d+): error: (.+)7)

This pattern matches the structure of the ‘javac‘ errors as shown above, enabling the ex-
traction of relevant error information. Subsequently, the extracted errors are encapsulated as
objects of the ‘Error class, which encompasses properties such as file path, line number, er-
ror type, and error details. Additionally, the Error class provides methods to accommodate

supplementary properties, facilitating a nuanced analysis.

class Error:
def __init__(self, file, line, error, details):
self. file = file
self.line = line
self.error = error
self.details = details

self.additional _properties = {}

def set_additional_property(self, key, value):

self . additional_properties[key] = value

def get_additional_property(self, key):

return self.additional_properties [key]

class ErrorFinder:
def find_errors(directory_path):
total_errors = []
Iterate through each directory in the specified directory

for subdir in os.listdir (directory_path):

36

subdir_path = os.path.join (directory_path , subdir)
if os.path.isdir (subdir_path):
error_file_path = os.path.join (subdir_path ,
"untrained_compilation_errors.txt’)
if os.path.exists(error_file_path):
with open(error_file_path , ’'r’) as file:
text = file.read()
errors = find_errors_through_regex (text)

total_errors += errors

return total_errors

3. Statistics and Graph Generation

The final step in the error analysis process involves the generation of comprehensive statistics
and illustrative graphs for in-depth analysis. The ‘ErrorFinder‘ class undertakes a comprehen-
sive analysis of the extracted errors to compute statistics such as the total number of errors,
the number of unique error types, the total number of failing test files as well as the count for
each error type.

Furthermore, a ‘GraphGenerator* class is employed to utilise the extracted errors in gen-
erating graphical representations illustrating error distributions and trends. Prior to graph
generation, certain error types undergo generalisation to ensure a more holistic analysis. These
generalised errors serve as the foundation for crafting statistics and visual representations, en-
abling the identification of prevalent error patterns and trends within the dataset. An example
is that an error such as ‘package Mockito does not exist’ is generalised to ‘package SomePackage
does not exist’ to group all errors of this format.

This elaborate framework ensures a thorough and diligent analysis of errors encountered

during test compilation, thereby furnishing invaluable insights for the evaluation process.

5.3.7 Prompt Generation Setup

The Prompt Engineering Setup describes the methodology devised to craft an optimised prompt
for querying the Large Language Models to generate tests. The primary objective of this
subsection is to establish a framework designed to generate an initial prompt that can yield

test cases compiling without necessitating heuristic interventions.

37

The Prompt Engineering Setup is an essential component of the evaluation process, aiming
to streamline the test generation process by calibrating the prompt used to query the LLMs.
Initially, the approach entails generating an initial set of test cases, as described in the test

generation setup, utilising the prompt

Generate a Java test class using JUnit4d for the following Java class,

reply with code only:

Subsequently, an error analysis is conducted as described in the previous subsection to
determine prevalent errors encountered during test compilation.

Based on the errors identified during the test analysis phase, a systematic process of prompt
refinement ensues, wherein contextual information is judiciously included into the prompt, to
address errors resulting from not enough contextual information being provided in the previous
prompt. The goal is not to find a prompt that eliminates all errors, as this is infeasible due
to the impossibility of providing all the necessary context to eradicate errors entirely. Instead,
the objective is to establish a good baseline that furnishes the LLMs with sufficient context to
generate a test case for any Java class. The contextual information primarily revolves around

test setup rather than the specifics of the test class itself.

5.3.8 Error Ratification Setup

The Error Ratification Setup seeks to explain the procedure devised to handle errors encoun-
tered during the compilation of test cases that were generated by the Large Language Models,
incorporating a systematic approach to rectify compilation errors and ensure the generation of
high-quality, compilable test suites

It constitutes a critical aspect of the evaluation process, aimed at mitigating errors encoun-
tered during the compilation of test cases generated by Large Language Models (LLMs). By
reprompting the Large Language Models with contextualised prompts and systematically ex-
cluding erroneous code segments., this approach endeavours to streamline the error rectification

process and enhance the overall quality of the generated test suites.

Error Handling Methodology

The generated test cases may not always compile due to inherent errors within the code. To
address these errors comprehensively, a multi-faceted approach is adopted, which can be broken

down into three overarching steps.

38

1. Error Contextualisation and LLM Reprompting
2. Exclusion of Erroneous Lines and Methods

3. Exclusion of Erroneous Files

Error Contextualisation and LLM Reprompting

The first step in handling the errors is by re-prompting them to the Large Language Model.
In this step, the aim is to provide the Large Language Model with more context about these
errors. Given that there is a token limit, a more greedy approach is taken in selecting which
errors gets more context and which ones do not. To be more precise, we will only aim to add
more context to the more commonly occurring errors.

Before we discuss the reprompting methodology, it is imperative to mention a limitation of
using the OpenAl API. Unlike the use of the chatgpt model via the web interface, the OpenAl
API does not possess any memory capabilities. This means that the model will only utilise the
information provided in the prompt. This limits the amount of context that can be given to
the Large Language Model, which limits this setup to exclude some details such as the Class
Under Test (CUT), instead taking the approach of including the failing test class in the prompt
as well as the errors resulting from it with provided context about them.

This Reprompting step is conducted for each project at a time. This is also due to a
limitation, which will be discussed in more detail in the implementation chapter, where in a
bid to add contextual information such as class signatures, we utilise a library which requires
a Java Virtual Machine (JVM) instance which cannot be stopped and restarted in one run,
and given the need to provide it a class path for each project, this limits us to operate on an
individual project basis.

There are three approaches that can be taken in handling the errors for a project. For each

failing test in a project, we can:
1. provide the failing test and one error at a time
2. provide the failing test with multiple errors of the same type at once in isolation
3. provide the failing test with multiple varied errors

For this report, we have chosen the third option as being more efficient, given that providing
varied errors can enable the model to tackle multiple errors at once. Had we chosen the other
approaches in which the model is required to handle the errors in isolation, it may limit the

model’s understanding of the broader context and interactions between the different error types.

39

With this made clear, the reprompting of errors for each project is done in the following
phases:

1. Error Logging and Extraction

The first phase involves the Error Logger and Error Finder from the Error Analysis Setup
being used to extract any errors that occur within the project. This returns to an array of
Error objects for a project.

2. Error sorting

Next, the errors for a project are parsed to a “handle_all_errors_for_project” method within
a Reprompter class. These, errors are then sorted into the files that they are located in by
grouping them based on their ‘file’ property. Subsequently, each file and its errors are parsed
to a “handle_all_errors_for_file” method in the next phase for handling

3. Error Contextualisation

In the effort to re-prompt the model, this setup will seek to provide the model with instruc-
tions to abide by as well as contextual information about the errors. To do so, we will use the

following base prompt:

Fix the errors in the provided test class:

test class goes here

Encountered errors:

errors with context go here

Your task is to address the errors identified above while preserving
as much of the test functionality as possible. Ensure that you try to
adhere to this instruction and make only the necessary corrections to
resolve the errors. The resultant test class must be compilable and
achieve high—quality testing , this is the main goal. You must reply

only with the test class code with the corrections.

40

In the course of error contextualisation, a distinct methodology is employed for each encoun-
tered error. This categorisation is necessitated by the pragmatic constraints posed by the token
limit, which compels us to prioritise the provision of more contextual information for the most
prevalent errors. These predominant errors will be subject to a detailed discussion in the imple-
mentation chapter, providing a comprehensive understanding of their resolution mechanisms.
Conversely, less frequent and unique errors are addressed through a more generalised approach,
as it will be discuss shortly. In essence, while common errors benefit from tailored treatment
aimed at enhancing comprehension within the constraints of token limitations, rarer errors are
managed through a holistic approach, which will be the current focus of this subsection. These

errors are handled as follows:

1. A preliminary phrase is used to categorise these errors as less specific and of different

types “The following errors are unspecified:”
2. Then for each error that falls in this category, the error message, line, and more details
about it (which is provided by the java compiler) are listed:
Error Type
Error Line

Error Details

The following example showcases a prompt for a class that contains such an error

Fix the errors in the provided test class:
public class SomeTest {

Calc calculator = Calculator ();

Q@Test
public void testaddition (Int numl, Int num2) {

assert (5, calculator.compute(1l,’4’ 7+ 7);

41

Encountered errors:

The following errors are unspecified:

Error Type: Syntax Error

Line: 6

Error Details:

[javac] assert (5, calculator.compute(1,’4’,7+7);

~

[javac]

Your task is to address the errors identified above while preserving as
much of the test functionality as possible. Ensure that you try to adhere
to this instruction and make only the necessary corrections to resolve the
errors. The resultant test class must be compilable and achieve high—
quality testing, this is the main goal. You must reply only with the test

class code with the corrections.

4. Reprompting

Once the prompt has been generated, the model is re-prompted and the resultant class is
saved to the file.

Operational constraints imposed by a token limit often render certain files susceptible to
containing an excessive number of errors, surpassing the capacity of a single prompt. In response
to such scenarios, the implemented strategy involves systematic error management techniques.
This involves maintaining a record of errors incorporated into the prompt in a variable named
“handled _errors” , alongside a dedicated variable termed "result_class” initially set to represent
the code within the test class. Additionally, the array ”handled_errors” is initially devoid of
entries. Prior to appending an error to the prompt, a check is performed to determine whether
the inclusion of the error would remain within the confines of the token limit, facilitated by
the TokenCounter class. If the limit is not exceeded, the error is appended to both the prompt
and the handled errors array; otherwise, further additions are precluded. Subsequent to the
saturation the prompt, it is submitted to the LLM, yielding a modified result_class value. This
iterative process continues, progressively appending unhandled errors to the prompt until all

errors have been addressed, as signified by the equivalence of the handled_errors array to the

42

original file errors. Upon the successful handling of all errors, the last returned class (i.e., the
latest value of result_class) is persistently stored to file.

This process entails how errors are handled for each file within a project. For each project,
this setup will aim to perform this Error Contextualisation and LLM Reprompting step three

times. If some errors are not eradicated, then we move on to the next step.

Exclusion of Erroneous Lines and Methods

In instances where errors persist despite LLM reprompting, the systematic exclusion of erro-
neous code segments is initiated. This is done in two ways:

1. Exclusion of lines of code that will not propagate into more errors

In this case, the setup aims to remove a line of code from the test class. This is only
performed when a line is guaranteed not to propagate into more errors within that test class.
Several methods are available to identify lines that are likely to cause errors, such as statically
analysing the code structure and examining how lines interact with each other. However, for
the purposes of this report, our focus is narrowed to the exclusion of lines associated with
assertions. This deliberate limitation is founded upon the premise that such lines, by nature,
do not engender error propagation, and constitute the majority of removable lines, as it will be
discussed within the implementation chapter.

2. Excluding methods that will not propagate into more errors

In the remaining errors that cannot be handled by removing the lines, this setup takes
the approach of excluding the method in which this error is located, if applicable, using the

following regular expression:

(r’((public|private|protected |static|final|\s)*x)\s+[\w<> \[\]]+\s+(\w+)\s=*\
(IO s L)} 7)

While more efficient methods, such as developing a dedicated parser, could potentially yield
better results, dedicating resources and time to such an endeavour may not significantly improve
outcomes beyond what the regular expression achieves. Moreover, Java’s complexity presents
a challenge, as crafting a parser capable of handling all scenarios is a complex undertaking.
Hence, the approach of this setup prioritises practicality, aiming to address the majority of
cases effectively rather than exhaustively. This regular expression method offers a pragmatic
solution that satisfactorily addresses the complexities of Java code structures. Having said this,
the following method pseudo code is used to match method declarations and get the start and

end lines of a method:

43

function get_method_lines_for_line (java_file_path , line_number):
open java_file_path

read file content into source_code

method_pattern = r’((public|private|protected|static|final|\s)x)\s+

Aw<> AN\ s+ OwH)\s s\ ()T \) N s { (7 {3])}
for each match in find-matches(method_pattern, source_code):
method_start = count_newlines(source_code, 0, start_of(match)) + 2

method_end = count_newlines(source_code, 0, end_of(match)) + 1

if line_number is between method_start and method_end:

return (method_name_from _match (match), method_start, method_end)

return None

Here is a breakdown of the regular expression:
((public|private|protected|static|finall\s)*)

This part captures the access modifiers (public, private, protected), modifiers (static, final),
or whitespace characters (\s) preceding a method signature. The * quantifier means zero or

more occurrences of the enclosed group.
\s+
This matches one or more whitespace characters (spaces, tabs, line breaks).
N\w<>, \[\11+]:

This matches the return type of the method. It includes word characters (\w) which are
typically letters, digits, or underscores, as well as angle brackets (j;), commas (,), and square

brackets ([]). This part allows for generics and arrays in the return type.

\s|+

44

This matches one or more whitespace characters.
A\w+)
This captures the method name, consisting of one or more word characters.
\s*
This matches zero or more whitespace characters.
ATV

This matches the parameter list enclosed in parentheses. \(... \) is used to escape the

parentheses. [")]#* matches zero or more characters that are not a closing parenthesis).
\s*
This matches zero or more whitespace characters.

{0 {31}

This captures the body of the method enclosed in curly braces . ["{}] matches any char-

acter except and , and * matches zero or more occurrences of these characters.

It is imperative to make clear that this setup only exclude methods that will not propagate
into more errors. In particular, it only excludes test methods, but not setup (with @Before
annotation) or after (with @After annotation) methods. This step is performed 5 times, and

any persistent errors are moved on to the next step.

Exclusion of Erroneous Files

In the concluding phase of the error rectification process, any files found to contain errors are
systematically excluded. These instances typically involve errors embedded within the imports,
setup, and after methods of test classes, which are beyond the remedial capacity of the LLM or
cannot be mitigated through line or method exclusions. Consequently, all files exhibiting such
persistent errors are systematically removed from the project until the entirety of the identified

issues is resolved

45

Conclusion

The Error Ratification Setup establishes a structured framework to comprehensively address
compilation errors encountered during the generation of test cases. By reprompting the LLMs
with contextualised prompts and systematically excluding erroneous code segments, this ap-
proach aims to eradicate errors effectively, ensuring the generation of high-quality, compilable
test suites. It is imperative to take note that each time errors are handled, The error analysis
setup is employed to log and extract errors again in anticipation of changes to the errors. To
provide a final overview of the three steps that constitute this setup, we have provided the

following pseudocode:

function reprompt_for_project(project_path):

logger = create CompilationErrorLogger (directory)

error_finder = create ErrorFinder(directory)

the errors to be handled

errors = error_finder.find_errors_for_project (project_path)

#sort errors into files
files = {}
for each error in errors:
if error.file in files:
files [error. file] 4= 1
else:

files [error. file] =1

Number of rounds the LLM is reprompted

reprompt_rounds = 3

Number of rounds of line and method exclusion

line_removal_trials = 5

total_deleted_files = 0

46

Loop until there are no more errors in the project

while length(errors) > 0:
logger.clean_project (project_path)
logger.log_compilation_errors_for_project (project_path)
error_finder = create ErrorFinder(directory)

errors = error_finder.find_errors_for_project (project_path)

Create reprompter for method

reprompter = create Reprompter(errors, api_key)

Step 1: Error Contextualisation and LLM Reprompting
if reprompt_rounds > 0:
reprompt_rounds —= 1

reprompter. handle_all_errors_for_project ()

Step 2: Exclusion of Erroneous Lines and Methods
elif line_removal_trials > 0:
line_.removal_trials —= 1

reprompter.exclude_errors(errors)

Step 3: Exclusion of Erroneous Files

else:

deleted _files = reprompter.exclude_error_files(errors)

total_deleted_files += deleted_files

#Final Statistics

print error_finder.generate_statistics(errors)

Conclusion

The Error Reprompting Setup establishes a structured framework to comprehensively address
compilation errors encountered during the generation of test cases. By reprompting the LLMs
with contextualised prompts and systematically excluding erroneous code segments, this ap-

proach aims to eradicate errors effectively, ensuring the generation of high-quality, compilable

47

test suites.

5.3.9 Results Measurement Setup

The Results Measurement Setup aims at assessing the quality and effectiveness of the generated
test suites. This subsection delineates the methodology employed for measuring the metrics
discussed earlier in this report, including coverage, mutation score and the code style of the
generated test suites.

The evaluation process commences following the Error Rectification Setup, wherein all com-
pilation errors are addressed, ensuring the generation of error-free test suites. Subsequently,
this stage facilitates the comprehensive assessment of the generated test suites based on the

predefined criteria.

Coverage Measurement

The measurement of coverage serves as a fundamental aspect of evaluating the effectiveness of
test suites. For this purpose, Jacoco [38], a widely used coverage measurement tool for Java,
is employed. This report will assess coverage in terms of line (statement) and branch coverage.
Each project in the evaluation dataset is configured with the necessary jacoco JAR to facilitate
coverage measurement. Subsequently, ant tasks are configured for each test suite to measure
coverage.

Jacoco operates in three stages in a bid to produce coverage statistics, which are outlines
below:

1. Instrumentation: The compiled test files are instrumented by a Jacoco agent to generate
coverage data. Here Jacoco creates a new set of instrumented tests, whereby the bytecode of
each of these test files is supplemented with data to assist in the measurement of coverage.

2. Test Execution: The instrumented test files are executed using JUnit, ensuring the
execution of the test cases. During the running of these tests, the Jacoco agent captures
coverage data and saves them into an executable file.

3. Coverage Report Generation: Upon test execution, Jacoco utilises the coverage data
captured in the executable file to produce a coverage report.

An ant task is configured for each of these stages. Once coverage reports are generated,
a general line and branch coverage statistic for the entire dataset is calculated for the entire

dataset by averaging these values for each project in the dataset.

48

Mutation Score Measurement

The Mutation Score Measurement represents a crucial aspect of evaluating the effectiveness
and robustness of the generated test suites. In this subsection, the methodology for measuring
mutation score using Pitest [44], a widely acclaimed mutation testing tool for Java, is elucidated.

Mutation testing aims to evaluate the quality of test suites by introducing artificial faults,
known as mutations, into the source code and assessing whether the test suite detects these
mutations. This report will utilise Pitest, a widely acclaimed mutation testing tool for Java.
Pitest automates the mutation process by generating mutants and running the test suite against
them, thereby measuring the mutation score, which indicates the effectiveness of the test suite
in detecting faults. This is done in the following steps:

1. Mutant Generation: Pitest generates mutants by introducing faults, such as modifying
operators, changing method calls, or altering conditional expressions, into the source code.

2. Test Execution: The test suite is executed against the mutated source code, aiming to
detect and fail tests for mutants that indicate potential faults.

3. Mutation Score Calculation: Pitest computes the mutation score, representing the per-
centage of mutants killed by the test suite compared to the total number of mutants generated.

An Ant task is configured for each package within the project to measure mutation score and
generate a detailed report. This approach mitigates resource constraints, as mutation testing
can require significantly more resources than traditional testing methods.

Once mutation score reports are generated for each package, a general mutation score is
calculated for each test suite by averaging the scores obtained within each package. This ag-
gregated score provides a comprehensive assessment of the test suite’s effectiveness in detecting

faults across the entire dataset.

Code Style Measurement

The Code Style Measurement segment of the setup involves utilising Checkstyle [9], a renowned
tool for enforcing coding conventions, to assess the adherence of the generated test suites to
predefined coding standards. This subsection outlines the process of checking the test suites
against two prominent style guides: the Google Java Style Guide [19] and the Sun Java Style
Guide [37].

Checkstyle serves as a powerful tool to ensure code consistency and maintainability by
enforcing coding conventions. This setup will be utilising Checkstyle in the following steps:

1. Configuration: Ant tasks are created for each test suite to execute Checkstyle and analyze

49

the code against the predefined style guides.

2. Style Guide Evaluation: Checkstyle examines the test suite codebase and identifies
violations of the specified coding conventions outlined in the Google Java Style Guide and the
Sun Java Style Guide.

3. Violation Reporting: Checkstyle generates comprehensive reports detailing the detected
violations, providing insights into areas where the test suites diverge from the prescribed coding
standards.

The generated reports from Checkstyle serve as the basis for deriving graphical illustrations
of the code style violations. These illustrations provide a visual representation of the extent
and distribution of violations across the test suites, as it will be demonstrated in the evaluation

chapter.

5.3.10 Wrap up

The Design Chapter sets the stage for the evaluation of test generation techniques employing
Large Language Models (LLMs) in software testing. It delineates the framework for exper-
imental setup, from dataset selection to tool configuration, elucidating the methodology for
test generation, error analysis, and evaluation metrics. Each subsection offers a detailed ex-
ploration of the setup, emphasising the meticulous planning and execution essential for robust
evaluation. As this report transitions to the Implementation Chapter, the groundwork laid in
this section provides the foundation for implementing and refining the proposed methodologies.
Through the subsequent chapters, this report will delve deeper into the practical application
of these techniques, offering insights into the efficacy and potential implications of the testing

techniques outlined in the report.

50

Chapter 6

Implementation

6.1 Overview

The Implementation Chapter delves into the practical execution of the methodologies outlined
in the preceding Design Chapter. It encapsulates a comprehensive series of steps aimed at
achieving the overarching objectives set forth in the Requirements section. This chapter unfolds
with the process of Prompt Generation, marking a departure from the sequence presented in
the Design Chapter. This strategic shift is orchestrated to ensure that the optimised prompt
is used to fine tune the model during the subsequent Fine Tuning phase, thereby aligning the
fine-tuned model’s behaviour more closely with the intended test generation process.
Following the Fine Tuning of the model phase, the chapter branches into three distinct
streams: Evosuite Test Generation, and Test Generation using both Untrained and Trained
Models. Furthermore, the chapter encompasses Error Analysis in which the errors generated
by the trained and untrained models are again analysed and Error Ratification which seeks to
rectify these errors within the generated test suites. Lastly, the chapter culminates in Results
Measurement, where the efficacy and performance of the generated test suites are rigorously
evaluated using the established metrics and tools discussed in the previous chapter. Through
this comprehensive implementation, the chapter aims to achieve the overarching objective laid

out in the Requirements Section.

o1

6.2 Prompt Generation

The commencement of the Prompt Generation phase entails leveraging the established frame-
work from the preceding Test Generation phase to curate an initial test suite for each project
within the dataset using the gpt-3.5-turbo model. As expounded upon in the design chap-
ter, this process initiates with the creation of a dedicated directory, termed 'untrained_tests,’
designed to house all generated tests for a given project.

As delineated in the preceding chapter, each ’java’ file undergoes a process of code extrac-
tion, subsequent to which it is appended to a JSON conversational template, preparing it for
prompt submission to the Large Language Model (LLM). The initial prompt utilised in this
phase is structured as follows:

‘Generate a Java test class using JUnit4 for the following Java class, and reply with code
only:’

Subsequently, the API response containing the generated code is extracted and written to
the corresponding test file. This iterative process is applied to all eligible Java files within the
source directory, ensuring adherence to token constraints. Employing this systematic approach,
a total of 3,143 tests were generated across the evaluation dataset, with a cumulative token
query count of 11,612,4111. However, 149 files could not be prompted due to exceeding the
token limit.

In the subsequent step, error extraction is undertaken utilising the ErrorLogger and Er-
rorFinder classes, as elucidated in the Error Analysis setup within the design chapter. The
generated tests are compiled for each project in the evaluation dataset, with any standard out-
put (stdout) being logged into a text file within the project base directory. The ErrorFinder
then analyzes this text file and generates a list of Error objects based on any detected errors.
Initial statistics generated by the ErrorFinder reveal a total of 2,383 errors, with ’cannot find
symbol’ and ’package SomePackage does not exist’ errors constituting 82% of the total errors,

sa depicted by the adarr plot below.

52

package org.mockito does not exist

static import only from claéses and inteifaces

600

cannof find symbol

method does not override or implem&nt a method-from a supertype

package org.mockito.junit does not exist

Furthermore, highlighting the distribution of errors per file, the median number of errors
per file was approximately 2, with the maximum and minimum numbers of errors per file being
33 and 1, respectively. This distribution is visually depicted in the accompanying box plot,

which provides a clearer illustration of the spread of errors across the dataset.

Error Count per File

30 1
25 A
204
"
f=4
=
[=]
(9]
]
g 151
W
10 A
5,
I
0_ T
1
Fle

53

In delving into the statistics surrounding each error type, particularly the ’cannot find
symbol’ errors and 'package SomePackage does not exist’ packages, this section aims to unravel
the underlying causes of these prevalent issues. Through meticulous analysis, it will consider
three instances. Firstly, it discern whether these errors stem from direct missing dependencies
within the Ant compilation task during the experimental setup, or if the errors are indicative
of broader challenges within the project structure. Subsequently, if the prior reasoning appears
unsatisfactory, this exploration will focus on dissecting the root causes of the ’cannot find
symbol’ errors, probing into potential issues such as undeclared variables or incorrect import
and package declarations. Following this investigation, we will pivot towards examining the
causes of the 'package SomePackage does not exist’ errors, aiming to elucidate any deficiencies
in the use of incorrect dependencies. By delving into these intricacies, we aim to provide a
comprehensive understanding of the factors contributing to these errors and pave the way for

targeted solutions in the subsequent sections.

Considering class path issues in the experimental setup

First, an examination of classpath issues within the experimental setup is considered. As part
of our debugging process, the dependencies loaded in the classpath were checked to ensure their
accuracy. This investigation revealed that the compiled source and test files, along with any
libraries within the project’s ’lib’ directory, were indeed loaded at runtime as expected. This
verification affirms that the encountered errors are not attributable to shortcomings within
the experimental setup. By ruling out classpath discrepancies, we can confidently focus our

attention on other potential sources of error within the project structure.

A deeper examination of the cannot find symbol errors

Thereafter, the analysis delves deeper into the characteristics of the ’cannot find symbol’ errors.
In this context, particular attention is directed towards examining the presence and correctness
of package declarations within files containing these errors. Notably, two graphs were generated

to elucidate these aspects: the first revealing that 60

54

Files with Errors and Package Declaration Status

Without Package

With Package

Files with Errors and Correct Package Declaration Status

Without Correct Package

100.0%

Without Correct Packa

This observation aligns with the absence of contextual information provided to the Large
Language Model during the test generation phase regarding the package location of the file
under consideration. To substantiate this inference, correct package declarations were subse-

quently added to the files, resulting in a reduction of total errors from 2,415 to 1,556. Specif-

95

ically, the ’cannot find symbol’ errors decreased from 1,808 to 1,021, constituting a notable
decline of 43.5%. The persistence of remaining ’cannot find’ errors suggests potential idiosyn-

crasies specific to each of the tests generated by the Large Language Model.

A deeper analysis of the “package SomePackage does not exist” errors

Subsequently, a more comprehensive examination is conducted to elucidate the underlying
causes of the "package SomePackage does not exist” errors. Initially, a bar graph was gener-
ated to illustrate the distribution of packages responsible for triggering these errors. This is

demonstrated below:

Packages with "Package Does Not Exist" Error

EClientErrors

org.mockito

org.mockito.junit 4

org.powermock.core.classloader.annotations -

org.powermock.modules.junit4 -

org.mockito.runners -

org.powermock.api.mockito 4

Packages

org.objectweb.asm -

org.json -

PlanController 4

org.easymock -

org.petsoar.shoppingcart 4

INCHI_KEY +

o 50 100 150 200 250 300 350
Error Count

Remarkably, the graph delineates that all implicated packages were absent from the class-
path, as they were not initially deemed requisite. These packages predominantly represent
libraries integrated by the Large Language Model (LLM) during testing, which were not orig-
inally included in the project dependencies. Notably, among these packages, Mockito emerges
as the most prevalent.

To mitigate such occurrences, a shared ’lib’ directory is incorporated into the classpaths of all
evaluation projects. Within this shared ’lib,” only approved libraries that the LLM is authorised
to utilise are included, along side the dependencies of each project. These sanctioned libraries
include JUnit, Hamcrest, and Mockito. Furthermore, the persistence of these errors underscores
the absence of guidance provided to the LLM regarding the selection of dependencies, thereby

necessitating its inclusion of any libraries deemed essential for test generation.

56

An investigation into the “class Someclass is public, should be declared in a file

named SomeClass.java” errors

Although not as prevalent as the missing symbol or dependency errors examined previously, the
“class Someclass is public, should be declared in a file named SomeClass.java” seem to provide
more insightful findings that can guide this report’s prompt generation undertaking. Upon
closer examination of these errors, it becomes evident that they all stem from inconsistencies
between class names and file names. According to Java convention, a file must be named after
the class it contains. During our test generation phase, files were named after the Class Under
Test (CUT) suffixed with "Test’. However, the test classes generated by the Large Language
Model (LLM) in these errors appear to have deviated from this convention. Variations in names,
such as the CUT name prefixed with *Test’ or entirely different class names, were observed. This
discrepancy underscores the absence of specific instructions provided to the LLM regarding the
naming of test classes, resulting in deviations from expected naming conventions. Furthermore,
it is noteworthy that some file names appeared completely dubious, suggesting that test files
were generated for files that were not conducive to testing. In the setup for the model test
generation it was assumed that every file was testable and contained a class to test. However,
this assumption proved inaccurate in cases such as package-info.java files, where test classes
were created with file names like package-infoTest.java, which lacked coherence or any classes
within them. To address this issue, a refinement of the test generation setup is conducted by
implementing a mechanism to exclude files that do not contain clear class declarations, thereby
ensuring more accurate and coherent test generation.

In light of our examinations, several key components emerge as essential in refining our
prompt generation process. Firstly, specifying a consistent naming convention for the test class,
aligning it with the Class Under Test (CUT) name suffixed with "Test’, ensures adherence to
Java conventions. Secondly, including a package declaration within the generated test files
not only reinforces organisational structure but also mitigates 'package does not exist’ errors.
Lastly, delineating a predefined set of dependencies that the Large Language Model (LLM) is
permitted to utilize, encompassing libraries such as JUnit, Hamcrest, and Mockito as well as
specific project dependencies, fosters consistency and compatibility across generated tests.

To ensure the precise specification of the test class package, a method leveraging regular
expressions is proposed. This method facilitates the extraction of the package containing a file
from its file path, thereby aligning the generated test class with its corresponding package. Sim-

ilarly, the test class name is obtained by extracting the Class Under Test (CUT) name from the

57

file name and appending the suffix "Test’, in accordance with established naming conventions.
Furthermore, to compile a comprehensive list of dependencies, an iterative traversal of both the
project’s lib directory and the shared ’lib’ directory is undertaken. Subsequently, the names
of JAR files located within these directories are extracted, thereby encompassing all requisite
dependencies for the test generation process. With this methodology, the final prompt for this

phase is as follows:

You are a Java software developer tasked with thoroughly testing a
provided Class Under Test using the JUnit 4 testing framework. This Class
Under Test is located within the package {package}.

To begin, ensure that you create a test class in Java 11 (JDK 11) with a
specific name: {class_name}. This name is essential for consistency and
clarity .

Next, let’s focus on the dependencies. Import only the necessary classes
and libraries from the provided dependencies string: {dependencies}. It’s
crucial to avoid importing any libraries or dependencies outside of this
list .

As you delve into writing the test methods, remember to strictly test the
public interface (methods) of the provided class {contents}. Do not test
private methods or abstract classes, maintaining a focus on the public API.
Your task is to write well—documented and appropriately named test methods
that cover all aspects of the Class Under Test’s functionality. Each test
method should be documented, named sensibly , and include relevant
assertions to validate the behavior.

Ensure that the test class includes a setup function that creates all
necessary objects required for testing. This setup is vital for
initializing the environment before each test method execution.
Additionally , it ’s imperative to include a package declaration at the top
of the test class file to prevent compilation errors. Use the provided
package name: {package}.

Lastly , aim for comprehensive test coverage, including edge cases,
boundary conditions, and typical scenarios. Your goal is to provide

thorough validation of the Class Under Test’s behavior.

58

Now, with all the guidelines in place, proceed to generate the test class

based on the provided contents:

6.3 Fine Tuning

Fine-tuning of the gpt-3.5-turbo-0125 model, as detailed in the design chapter, proceeded

through a meticulously structured approach encompassing three distinct steps.

Data Collection

Data procurement commenced with the gathering of information from six open-source projects,
as outlined in the design chapter. To facilitate this process, a dedicated 'DataSources’ direc-
tory was established, housing individual directories corresponding to each project. Within
each project directory, ’src’ directories containing 'main’ and ’test’ subdirectories were created.
Project repositories were obtained in ZIP format from GitHub. Given the inherent diversity in
project structures, manual navigation through the repository structures was necessary to locate
and extract the source and test directories. Subsequently, these directories were copied into the
respective 'src” and ’test’ directories for each project within the "DataSources’ directory.
Following this procedure, each project adopted a uniform format for source and test di-
rectories, thereby enabling traversal with a standardised algorithm. Subsequent to the data
collection phase, a "TestCollector’ class was employed. For each project within the "Data-
Sources’ directory, this class traversed the test directory (’src/test’) and identified each ’java’
file. For each discovered file, path manipulation was performed by removing 'Test’ from the
filename and replacing ’src/test’ with ’src/main’. The resulting path was then verified for exis-
tence. If confirmed, a test pair was established. These pairs were recorded as tuples in an array.
To store the pairs from this initial data collection phase, a directory named ’Stage_One_Tests’
was created. Within this directory, individual directories were generated, each corresponding
to an index of the tuple array. Within each directory, the focal class and test class were copied
and renamed as ’focal_class.java’ and ’test_class.java’, respectively. Additionally, a JSON file
containing a dictionary with values for the package, class name, and project of origin for the
test class was included. This concluded the data collection phase, yielding a total of 1659 pairs

collected from the aforementioned projects.

59

Data Preparation

In this phase, the collected test pairs from the previous data collection step undergo format-
ting for further processing. The formatted tests are stored in a designated directory named
"Stage_Two_Tests’. For each pair obtained in the initial stage, the test and focal class code are
extracted. Additionally, any commented metadata commonly found at the beginning of the
file are removed to streamline the code. Furthermore, to enrich this code, essential information
such as the package, class name, and dependencies for each test class are incorporated. The
package and class name were previously saved in a JSON file during the data collection step,
along with the name of the project that the pair is from. As for the dependencies, these were
predetermined by analysing the 'pom.xml’ and ’build.gradle’ files of the respective projects to
identify the necessary dependencies for testing capabilities. Subsequently, these dependencies
were compiled into a dictionary format. Given that each pair’s project can be determined from
the JSON file from the data collection stage, the dependencies for a test pair are retrieved by
querying this dictionary.

With this structured setup, the prompt generated from the prompt generation step is con-
textualised with the package, class name, and dependencies for the focal class, and serves as
the template for the user role. The resulting test class is tailored to the assistance role, and
these two are then incorporated into a conversational chat-style JSON format. This formatted
JSON file is saved within the 'Stage_Two_Tests’ directory, with the respective index number

serving as the file name. This concludes the data preparation phase.

Fine Tuning

In this phase, the data extracted from ’Stage Two_Tests’ is loaded into an array. Given the
extensive dataset consisting of 1659 test pairs, it is imperative to downsize to a manageable size
for fine-tuning purposes. Therefore, a subset of 250 test pairs is randomly selected from the
formatted data. To ensure adherence to token constraints, a token counter is employed during
the selection process, ensuring that none of the chosen JSON files surpasses the token limit.

Once the 250 JSON files are selected, they are compiled into a single JSONL file format.
Subsequently, this compiled file is uploaded to the OpenAl platform for fine-tuning. During
this phase, token and cost estimation are conducted to optimize resource allocation.

Upon successful upload, a fine-tuning job is initiated on the gpt-3.5-turbo-0125 model, with
the selected dataset. The model undergoes training for three epochs, each comprising a batch

size of 1. The fine-tuning process culminates in the generation of various statistics, with a

60

training loss of 0.1028 having been trained on 2,421,582 tokens.

6.4 FEvosuite Test Generation

Before proceeding with the Evosuite test generation, it’s imperative to compile the main source
code for each project within the dataset. This compilation process is executed via the command
line interface, resulting in the creation of a JAR file containing the compiled classes. This JAR

file is generated within the project’s base directory using the following command:
jar cf xproject_name=x.jar build/classes

Additionally, in the shared ’lib’ directory for all projects, a Evosuite (version 1.2.0) JAR is
uploaded, serving as the primary tool for test generation. Following this setup, the properties

required for the Evosuite test generation are configured using the command line interface:
java —jar ../lib/evosuite —1.20.0.jar —setup —cp lib /% <<project—mame>>.jar

This command establishes the classpath, including all dependencies within the project’s ’lib’
directory, along with the JAR file that was earlier created in the project base directory. Default
Evosuite settings are utilised during this setup.

Subsequently, Evosuite tests are generated for each project within the dataset. A search
budget (timeout) of 2 minutes is allocated for this process. The following command is executed

to initiate test suite generation:
java —jar ../lib/evosuite —1.2.0.jar —target <<project—mame>>.jar Dsearch_budget=120

This command specifies the target JAR file and sets the search budget to 120 seconds. Upon
execution, Evosuite test suites are successfully generated for every dataset in the evaluation

dataset

6.5 Large Language Model Test Generation

Aligned with the methodologies delineated in the design chapter, the Large Language Model
(LLM) test generation process encompasses the creation of two distinct test suites: one em-
ploying the ordinary model and the other leveraging the fine-tuned model. Both test suites are
generated with the same setup but prompting different models and storing the resultant tests
in different directories.

An enhancement to the test generation setup was introduced following to the investigation

into errors resulting from mismatches between test class and test file names in the prompt

61

generation setup, where some files were found to be untestable. This enhancement involves the
modification of the test generation criteria to exclusively create tests for files deemed ’testable,’
defined as those containing at least one class declaration. This condition was facilitated by the

utilisation of the following regular expression:

r’\s*(public|private)?\sx(abstract)?\sxclass\s+(\w+)\s+((extends\s+\w+)|

(implements\s+\w+(,\w+)*))?\s=*{’

This regular expression seeks to match Java class declarations within source code files. It
scans for lines containing class declarations, by matching lines that contain modifiers (e.g.,
'public’, ’private’), optional keywords (e.g., ’abstract’), and the class name itself. Additionally,
it accounts for class inheritance and implementation clauses. This refined matching criteria
facilitates the generation of tests for files with viable Java class structures

Following the incorporation of this regex, an initial untrained test suite was generated
utilising the ordinary model. However, upon inspection, it was observed that the resultant test
suite exhibited a substantial reduction in size than expected. This diminution was attributed
to the regex’s inclusion of the ”” symbol at the end, causing it to match only files in which the
opening bracket appeared on the same line as the class declaration. Consequently, lines with
the opening bracket in the next line were excluded from this matching process. To rectify this
discrepancy, the opening bracket was removed from the regular, allowing for a comprehensive
matching process. After this,, the missed tests were regenerated, culminating in a total of
16,124,111 tokens queried to the model and yielding 3138 test classes in total.

An analogous approach was adopted for the fine-tuned model, resulting in the generation
of a commensurate number of test classes and the utilisation of a similar token count. The
resultant test suites were segregated into the ’trained_tests’ and 'untrained_tests’ directories
for the fine-tuned and ordinary models, respectively, across every project within the evaluation

dataset. This encapsulates the proceedings of this subsection.

6.6 Untrained Error Analysis

Before examining the analysis of errors stemming from the test suite generated by the ordinary
model, it is imperative to acknowledge a critical caveat pertaining to the figures obtained during
this analysis. It was observed in the latter stages of this evaluation that the figures obtained in
this step were incomplete but nevertheless provided a snapshot of the overall error landscape

accurately. This discrepancy arose due to the default behaviour of the Java compiler (javac),

62

which limits the number of errors it throws to only 100 per project. To address this issue and
ensure the comprehensive capture of all errors, the 'xmaxerrs’ argument was incorporated into

the Ant tasks responsible for compiling the tests. The argument was set as follows:

<compilerarg value="—Xmaxerrs”/>

<compilerarg value="0"/>

This addition instructs the Java compiler to report all encountered errors. Upon revisiting
the error compilation process post-discovery, it was ascertained that the actual total errors
amounted to 13,657 across all projects in the dataset. However, it is noteworthy that de-
spite this revision, the composition among the most common error types remained consistent.
Consequently, the figures utilised in the initial error analysis were essentially a downsized rep-
resentation of the overarching trends observed.

With this aforementioned caveat in mind, it is fit to proceed with the analysis of errors.
With the 100-error-per-project limit, the total number of errors aggregated to 1302. Notably,
this represents a 45.4% reduction in total errors compared to the 2383 errors generated using
the initial prompt in the prompt generation step.

The analysis revealed that the most prevalent errors in the test suites generated by the or-
dinary model were once again the ’cannot find symbol’ errors, totaling 657 occurrences. These
errors accounted for approximately 50.4% of the total errors, a notable decrease from their
previous dominance constituting 64% of errors during the prompt generation phase. How-
ever, 'cannot find symbol’ errors still represent a substantial portion of the error landscape.
Conversely, package errors saw a decline in significance, comprising only 23 errors (1.7%)
compared to their previous prevalence during the prompt generation phase, where they ac-
counted for 17.5% of the total errors (416 in total). It is noteworthy that excluding the ’cannot
find symbol’ errors, the composition of the top 5 errors has undergone a complete shift. This

transformation is visually represented in a radar plot provided below:

63

SomeObject has private access in SomeOtherObject

-uctor in class SoméClass cannot-be applied to given types;

cannof] find sym

ass is abstract; cahpot be instantiated

illegal character: '™

Having examined the overall landscape of errors in the test suites generated by the or-
dinary model, we now delve deeper into the characteristics of specific error types that offer
valuable insights. Among these, ’cannot find symbol’ errors stand out as a significant category
warranting closer scrutiny to start off. By dissecting these errors and understanding their ori-
gins and implications, this stage seeks to gain deeper insights to address the error ratification
stage. Therefore, it will commence our detailed analysis by focusing on the characteristics and

implications of ’cannot find symbol’ errors.

Cannot find symbol errors

In Java, ’cannot find symbol’ errors primarily arise because the Java compiler needs to verify
that all identifiers used in the code are available in the classpath. When the compiler encounters
an identifier that it cannot resolve, it throws this error.

Upon careful examination, these errors seem to stem from two distinct situations:

The first situation occurs when the symbol exists within the project source code but is not
imported correctly. These symbols are typically located in packages different from the file
attempting to use them. Given that the Large Language Model (LLM) was provided with
the package information for its Class Under Test (CUT) but not for these external classes it

attempts to use, these errors arise

The second situation arises when the symbol is incorrectly spelled or used. This can include

64

spelling errors, incorrect annotations, or the use of a completely nonexistent symbol.
When the Java compiler throws such an error, it typically provides a structured error mes-

sage containing the symbol and its location. For example:

[javac] import de.outstare.fortbattleplayer.model.SimpleCombatant;

~

[javac]
[javac] symbol : class SimpleCombatant
[javac] location: package de.outstare.fortbattleplayer.model

This error is an example of the first situation, where the symbol is imported incorrectly. The
correct import path should have been de.outstare.fortbattleplayer.model.impl.SimpleCombatant Test.
The Java compiler usually provides the symbol keyword (e.g., class, method, variable, con-
structor, static) and the name of the symbol in the error message. The most prevalent keywords
are 'class,” 'method,” and 'variable.” Errors with the 'method’ keyword typically arise from incor-
rect or unknown method calls, while errors with the ’class’ keyword often stem from improper
imports. In these errors, the class that the object is an instance of is provided by the compiler
along with the keyword. Similarly, errors with the ’variable’ keyword also usually arise from
incorrect imports, with the name of the class provided in the location parameter of the error

details.

package SomePackage does not exist errors

The occurrence of 'package SomePackage does not exist’ errors has become less prominent in
the test generation process. However, the residual errors appear to stem from instances where
the Large Language Model (LLM) utilises a dependency despite being explicitly instructed
to use specific dependencies. Additionally, a few instances of these errors arise from static
importations. In Java, static importations allow members (fields and methods) defined in a
class to be used in Java code without specifying the class explicitly. The following bar graph

shows the distribution of the remaining errors.

65

Packages with "Package Does Not Exist" Error

CombatantSide

org.objectweb.asm -

org.json 4

Field 4

Packages

net.virtualinfinity.atrobots.computer.instructions -

org.springframework.test.context 4

org.springframework.test.context.junit4

Error Count

constructor SomeClassConstructor in class SomeClass cannot be applied to given

types errors

An illustrative example of the Java compiler (javac) output for these errors is as follows:

constructor Person in class Person cannot be applied to given types;
[javac] Person person = new Person("John", "Doe");

[javac]

[javac] required: no arguments

[javac] found: String,String

[javac] reason: actual and formal argument lists differ in length

These errors arise when the Large Language Model (LLM) attempts to create an object without
possessing sufficient context regarding the constructor of the class it is instantiating. As a
result, the LLM makes assumptions about the parameters required for the constructor. The
javac output for these errors typically includes the required parameters to create an instance
of the class, along with the name of the class to which the object belongs and a reason for the

€error.

66

Reached end while parsing errors

Upon examination, errors indicating "Reached end while parsing” typically arise from two

distinct situations.

Incomplete Test Classes: One scenario contributing to these errors is when the Large Language
Model (LLM) generates an incomplete test class. This often occurs due to the token limit im-
posed during the model’s interaction with the prompt and completion. According to OpenAl’s
documentation, the maximum tokens allowed for a chat request with the gpt-3.5-turbo model
is 16,000, which must be shared between the prompt and completion. Consequently, if the
prompt consumes a significant portion of the token limit, the completion may be truncated,
resulting in an incomplete test class. Additionally, there is a cap of 4097 tokens on the response

generated by the model, further constraining the length of the completion.

Syntax Errors and Missing Closing Symbols: Another situation leading to "Reached end while
parsing” errors occurs when the model generates a test class with syntax errors, such as forget-
ting to include a closing brace ’}’ symbol. This oversight disrupts the parsing process, causing

the parser to reach the end of the file prematurely and consequently triggering the error.

The analysis of errors encountered in the untrained test suite provides valuable insights into
the limitations and challenges inherent in the Large Language Model (LLM)-based test gener-
ation process. These insights will inform our efforts to enhance the error rectification setup in

subsequent sections.

6.7 Trained Error Analysis

The methodology for analysing errors in the trained test suite paralleled that of the untrained
error analysis in the preceding section. However, akin to the untrained suite analysis, the
figures presented in this section were subject to the constraint of the Java compiler’s limitation
of 100 errors per project, as mentioned previously. Consequently, while the data obtained may
not represent the complete error landscape, it nonetheless offers a snapshot that accurately
captures the prevailing trends.

Having established the framework for analysis, it is noteworthy that the total number of
errors amounted to approximately 15,629 errors when the constraint of 100 errors per project
was removed. This figure represents an increase of 1,972 errors compared to the untrained test

suite. However, with the limit imposed by the compiler, the total was reduced to 2,563 errors,

67

still surpassing the 1,302 errors aggregated in the untrained tests analysis.

In contrast to the untrained suite, the distribution of errors in the trained suite exhibited
notable differences, with only the ’cannot find symbol’ errors being common in the top five errors
of both suites. The most prevalent error type in the trained suite was the ’class, interface, or
enum expected’ errors, accounting for a total of 450 occurrences. Following closely were the
‘cannot find symbol’ errors, with 428 instances. Together, these two categories constituted 34%
of the total errors. Furthermore, it is worth mentioning that the distribution of errors among
error types appeared to be more evenly spread in this test suite compared to the untrained test

suite, as illustrated in the radar plot to be presented below.

cannot find symbol

' expectéd

class, interface, or enur

illegal character: '#*

<identifier> expected

Subsequently, an examination of errors stemming from the test generation setup revealed a
consequential issue. Specifically, in the test generation setup, code extraction relied on isolating
the portion of the response enclosed within " ¢ " blocks. However, this method assumed that
the Large Language Model (LLM) would consistently encapsulate code within these designated
blocks, as expected. Regrettably, it was observed on several occasions that this was not the case.
Consequently, words were inadvertently included in the Java test files. As a result, the Java
compiler (javac) was unable to analyse these files comprehensively, leading to an incomplete
enumeration of errors. To address this challenge, a heuristic approach was implemented to

eliminate any extraneous text or "¢ ‘" blocks from the extracted code snippets.

6.8 FError Ratification

Moving forward, this chapter transitions into the implementation of the error ratification setup

which aims at rectifying prevalent errors encountered during the test generation process. Build-

68

ing upon the design chapter, this section will expand the setup to encompass specific error types

that emerged frequently across the untrained test suite. These errors are:

1. cannot find symbol

2. package SomePackage does not exist

3. constructor SomeClassConstructor in class SomeClass cannot be applied to given types,

4. reached end of file while parsing

To enhance efficacy, a duplicate of the untrained test suite was created and experiments
are conducted on it utilising contextual information tailored to address each error type. These
experiments were designed to inform the decision-making process regarding the integration of
additional steps to mitigate the occurrence of these errors. Beginning with the ’cannot find
symbol’ errors, this chapter will delve into the intricacies of error handling and the corresponding

experimental findings to elucidate the rationale behind the approach.

Cannot find symbol error handling

In accordance with the findings outlined in the analysis of the Untrained test suite, "cannot find
symbol” errors occur when symbols are either incorrectly imported or used within the codebase.
To address these errors effectively, it is essential to provide contextual information regarding
the package that the symbol may belong to, or the class signature associated with the symbol.
As elucidated during the analysis, these errors typically manifest in three distinct categories:
class, variable, and method. The class and method categories provide the class name of the
symbol, although in different sections of the error information provided by the javac compiler.
However, the method category does not explicitly contain the class name within these details.
Therefore, our approach to handling each of these categories varies accordingly. For instances
categorised under methods, where extracting the class name is unattainable, the focus is on
providing the package information if available; otherwise, we resort to presenting the error
message alone, as done for general errors. Conversely, for categories encompassing classes and
variables, the class name is extracted from the symbol and location attributes of the javac error
details, respectively.

To achieve this extraction, a method is employed which utilises regular expressions to match
each symbol type within the error details. This method ensures that the class name associated

with the symbol is captured accurately, as demonstrated in the pseudo code below:

69

function extract_symbol(string):
Define regular expression pattern to match symbol for class category
pattern = ’symbol:\s+(class|method|variable|static|constructor)\s+([\w.()]+)’
Search for pattern in input string
match = regex_search (pattern, string)
If a match is found
if match is not None:
If the first group in the match is None
if match.group(1l) is None:
Return ’None’ and the symbol extracted from the match
return (’None’, match.group(2))
else:
Define pattern to extract location (class name)
class_pattern = ’\ bclass\s+(\w+)’
Search for class name in input string

location_.match = regex_search (class_pattern, string)

If class name is found
if location_match is not None:
Return the class type, symbol name, and class name
return (match.group (1), match.group(2), location_match.group(1))
else:
Define pattern to extract location (type name) for variable
type_pattern = '(?<=\bof type\s)(\w+)’
Search for type name in input string
location_match = regex_search (type_pattern, string)
If type name is found
if location_match is not None:
Return the symbol type, symbol name, and type name
return (match.group (1), match.group(2), location_match.group(1))
Return the symbol type, symbol name, and None for location

return (match.group (1), match.group(2), None)

else:

70

If no match is found, raise an exception

raise Exception(’This error {string} does not seem to have a symbol’)

Subsequently, we traverse the source directory of the project to identify all classes defined
within it. This task is facilitated by the SourceDirectoryParser class, initialized with the path
of the project. The class employs a systematic approach to locate all ’java’ files within the
directory and utilizes the javalang library to extract class declarations from each file. These
classes are then stored and can be queried to ascertain whether a particular class is defined
within the project’s source code and if so, obtain its corresponding path. The parser class is

demonstrated in the following pseudo code:

class SourceDirectoryParser:

// Constructor

function SourceDirectoryParser (path):
directory_path = path
java_files = find_java_files(directory_path)
classes = parse_java_files(java_files)

classes = simplify_classes(classes)

// Find Java files in directory
function find_java_files(directory):
java_files = []
for each file in directory:
if file ends with ’.java ’:

add file path to java_files

return java_files

// Parse Java files to extract class names and their paths
function parse_java_files(java_files):
classes = []
for each java_file in java_files:
encoding = detect_encoding (java_file)
try:

tree = parse_java_file(java_file)

71

for each node in tree:
if node is ClassDeclaration:
add (class_name, file_path) to classes
except JavaSyntaxError as e:
print_syntax_error (java_file , e)

return classes

// Get path to class file if exists
function get_path(class_name):
if class_.name exists in classes:
return path corresponding to class_name
else:

return None

The pseudocode provided above outlines the functionality of the SourceDirectoryParser
class, illustrating its role in parsing Java files, extracting class names and paths, and providing
access to class paths based on queried class names.

Upon acquiring the path to the symbol, the next objective is to determine the package in
which it resides. To accomplish this, a Utilities class is leveraged which performs file path
manipulation, enabling the extraction of the package information effectively. Additionally, the
aim is to furnish a class signature for the symbol to address cases where errors stem from its
incorrect usage. To obtain the class signature, two essential classes are employed: JVMHandler
and Reflector.

The Reflector class operates in conjunction with a JVM instance and utilises the Java Re-
flections API to capture the class signature comprehensively. Upon initialising a JVM instance
with a class path listing the required dependencies for file analysis, the Reflector class lever-
ages the Reflections API to extract vital information such as the class definition, constructor
signature, and method and field signatures. For each of these components, the Reflector class
retrieves details including parameters, modifiers, annotations, and names whenever available,
storing these attributes as properties within the class instance. Subsequently, the Reflector
object can be queried to obtain the complete class signature or specific constructor, method,
or field signatures.

The pseudocode provided below illustrates the functionality of the Reflector class, outlining

its operations in accessing class signatures and associated details:

72

class Reflector:

// Constructor
function Reflector (jvm_instance):
jvm = jvm_instance
reflections = initialize_reflections (jvm)

class_signatures = extract_class_signatures(reflections)

// Initialize necessary libraries for Reflection
function initialize_imports (jvm):
Class = jpype.JClass(’java.lang.Class’)
Method = jpype.JClass(’java.lang.reflect .Method’)
Parameter = jpype.JClass(’java.lang.reflect.Parameter’)
Constructor = jpype.JClass(’java.lang.reflect.Constructor’)

return (Class, Method, Parameter, Constructor)

// Extract class signatures using Reflections library
function extract_class_signatures(reflections):
class_signatures = []

for each class in reflections.getSubTypesOf(Object):

class_definition = get_class_definition (class)
constructor_signature = get_constructor_signature (class)
method_signatures = get_method_signatures(class)

field _signatures = get_field_signatures(class)

add (class_definition , constructor_signature, method_signatures,
field _signatures) to class_signatures

return class_signatures

// functions to retrieve class, constructor, method and field definition

/).

This class serves the purpose of extracting the class signature of the symbol class, thereby
enhancing the accuracy of error resolution. Subsequently, armed with both the class signature

and package information, our focus shifts towards devising a robust framework to address these

73

errors systematically. The approach to handling these errors encompasses three distinct sce-
narios, as previously mentioned. This methodology can be encapsulated through the following

pseudocode representation:

function handle_cannot_find_symbol_error (error, parser, reflected):

// Extract symbol information from error

symbol_tuple = error.get_additional_property (’symbol’)

symbol_type = symbol_tuple [0]

if symbol_type equals ’variable ’:
symbol = symbol_tuple [2]

else:

class category

symbol = symbol_tuple [1]

// Determine symbol file path

if symbol_type is not equal to ’'method ’:
symbol_file_path = parser.get_path (symbol)

else:

symbol_file_path = None

// Prepare error messages with contextual information

error_messages = error.error_details + "\n” + error.details + ”\n”

// If symbol file path is None, return default error messages
if symbol_file_path is None:
return error_messages
else:
// Get package and reflection of the symbol class
symbol_package = util.get_package_path(symbol_file_path)
if not reflected:
reflecter = Reflecter (class_.name=symbol, class_path="",
package=symbol_package)

reflection = reflecter.get_reflection_as_string ()

74

//If reflection is Nomne, just provide the package
if reflection is None:
error_messages += f”\nThis symbol is located in package
{symbol_package}\n”
else:
error_messages += f”\nThis symbol is located in the package
{symbol_package}. Here’s a reflection 7 \
f7of the class signature of the {symbol} class:
\n{reflection }\n”
else:
error_messages += f”\nThis symbol is located in package
{symbol_package}\n”

return error-messages

It is imperative to not that the method also takes a reflected parameter which is boolean.
This is to ensure that we do not provide more than one class signature for the same class in
case the same symbol threw more than one of these errors within a file. The rationale behind
the use of this parameter is encapsulated within the error-handling method operating at the
file level, which in turn invokes the above method.

Experimentation was conducted with the duplicated untrained test suite, where each ”can-
not find” error is individually queried to the large language model. This querying process
involves providing contextual information such as the package and class signature, if available,
utilising the established setup. Remarkably, the number of these errors decreased from 657 to

371, as evidenced by the data depicted in the accompanying box plots.

SomeObject has private access in SomeOtherObject SomeObject has private access in SomeOtherObject

uctor in class SoméClass cannot be applied to given types; ‘uctor in class SoméClass cannot be applied to given types;

cannot find syr

cannof find sy

ass is abstract; cahgot be instantiated ass is abstract; cahgot be instantiated

llegal character: ™" iMlegal character: ™"

(0]

constructor SomeClassConstructor in class SomeClass cannot be applied to given

types

As previously discussed, errors of this nature arise when an object instantiation is attempted
with incorrect parameters. Typically, the javac compiler provides information regarding the
required parameters, the class name, and a reason for the error. However, due to the stateless
nature of the OpenAl API, there is no guarantee that the model, when prompted to rectify the
error, will comprehend the original purpose of the object instantiation. Therefore, it becomes
essential to augment the contextual information provided to the model. This augmentation
involves supplying the class signature of the object and the corresponding package, akin to the
approach adopted for handling “cannot find symbol” errors. To implement this augmentation,

the following function pseudo-code is employed:

function handle_constructor_errors(file_errors , parser):
// Initialize variables

reflected_classes =

added_classes = []

// Tterate through file errors
for each file_error in file_errors:
// Get constructor class

constructor_class = file_error.get_additional_property (’class’)

// If a reflection of the constructor class hasnt already been provided
if constructor_class not in added_classes:

added_classes.append(constructor_class)

// Get constructor class location

constructor_class_location = parser.get_path(constructor_class)

// If constructor class location is not None
if constructor_class_location is not None:
// Get package and reflection information

constr_package = util.get_package_path(constructor_location)

76

reflecter = Reflecter ()

ref_constructor = reflecter.get_constructors ()

// If constructor signature is found
if ref_constructor:

// Build reflection string

reflection = ’\nConstructors:\n’ + ’\n’.join(ref_constructor)
else:

reflection = None

// If reflection exists, provide package and reflection
if reflection is None:

reflected_classes += {”\nThe class {constructor_class} is located
else:

reflected_classes += f”\nHere’s a reflection of the class construc

return reflected_classes

Experimentation within this framework involved reprompting each instance of this error type
to the model for resolution. Initially, the total count of such errors stood at 44. Following the
reprompting process, all instances were successfully resolved, resulting in a complete eradication

of this error type.

package SomePackage does not exist

These errors manifest when the model inappropriately accesses dependencies or incorrectly
imports static fields or methods, as discussed earlier in the error analysis stage. The corrective
strategy in this setup entails reinforcing adherence to permitted dependencies or adjusting static
importations to encompass entire classes rather than specific methods or fields. This is done by
providing the permissible dependencies in the context, like it was done in the test generation
step.

Experimental validation of this approach involved re-prompting each package error to the
model alongside pertinent contextual cues. Initially, the total count of package errors stood at
172. Following the implementation adjustments, the error count diminished significantly to 67

accounting for a 61% reduction in total errors if this type.

7

reached end of file while parsing

The final error type of focus pertains to incomplete implementations within test classes. The
rectification involves reprompting the test class alongside the corresponding Class Under Test
(CUT), if feasible within the model’s token limit. In cases where both entities cannot be
accommodated in a single prompt, only the test class is included, with the LLM tasked to
complete it. It is important to note that this approach may lead to an upsurge in total errors,
as these errors arise in situations where the Java compiler remains unable to parse these test
classes for error detection, leaving any arising errors undiscovered.

Experimental verification of this methodology reveals initial instances of 44 such errors
within a total of 306 errors. However, upon re-prompting, the overall error count escalated to
710, with only one instance of the targeted error type persisting.

In illustrating the enhanced error rectification process, the current stage encompasses five
distinct methodologies for augmenting contextual information within the prompt prior to re-
prompting a file and its associated errors during the Error Contextualization and LLM Re-

prompting phase. These methodologies are encapsulated within the diagram presented below.

General
Contextualisation Errors Prompt Query the Model
Error o~ —
Rectification {)
Functionality h

cannot find symbol

package SomePackage
Doesnt Exist

reached end of file while
parsing

constructor SomeClassConstructor in
class SomeClass cannot be applied to
given types

Incorporating this revised setup, error rectification was executed for both the trained and
untrained test suites. This process encompassed three stages of re-prompting to the large
language model, succeeded by five stages of exclusion of erroneous lines and methods. Subse-
quently, files containing persistent errors were progressively excluded until no errors remained
within each project. Consequently, following this error rectification stage, a total of 940 test

files for the trained test suite and 1272 test files for the untrained test suite were retained.

78

6.9 Results Measurement

Upon completion of error rectification, the evaluation proceeds to assess the test suites based on
predefined criteria outlined in earlier sections of this report. As delineated in the design chapter,
a structured framework was formulated to gauge the coverage, correctness, and mutation score
of each test suite. This section delves into the practical implementation of these frameworks,

commencing with coverage analysis.

6.9.1 Coverage

In the pursuit of measuring coverage, Jacoco was selected as the tool of choice to assess the
entire dataset. To enact this, Apache Ant tasks were defined to facilitate the instrumentation
of compiled tests. Concurrently, modifications were made to the testing targets to enable
the Jacoco agent to track coverage as the tests were executed. Additionally, tasks for report
generation were incorporated into each project within the dataset, facilitating seamless coverage
generation.

While this setup facilitated the generation of coverage reports for the trained, untrained,
and human-authored test suites without issue, challenges arose when dealing with EvoSuite-
generated tests. A configuration bug was encountered when attempting to integrate EvoSuite
with Jacoco which lead to the generation of reports indicating 0

To circumvent this issue, an alternative coverage tool, Cobertura, was employed to measure
the coverage of the EvoSuite test suite. This approach necessitated a precaution to be considered
when evaluating the results in the Evaluation chapter. Unlike Jacoco, Cobertura does not
interfere with EvoSuite’s bytecode instrumentation during its coverage measurement process.
This distinction arises from the differing instrumentation methods employed by the two tools.
Jacoco utilizes on-the-fly instrumentation, which dynamically adds instructions to bytecode at
runtime when it is loaded by the JVM. Conversely, Cobertura employs offline instrumentation,
which directly adds instructions to bytecode after the compilation of tests. Thus, an Ant task
was configured to utilize Cobertura for measuring coverage statistics for each EvoSuite test

suite in the evaluation dataset.

6.9.2 Test Correctness

In the design phase, it was stipulated that the assessment of test correctness would be con-

ducted utilizing the Checkstyle tool, which evaluates adherence to the Oracle SUN Java code

79

convention guide. To implement this, Ant tasks were configured for each test suite, incorporat-
ing a Checkstyle agent to analyze the tests. Additionally, an Ant task was assigned to each test
suite to generate an XML report containing the findings of Checkstyle’s analysis. These XML
reports were subsequently consolidated into a singular file for each test suite, amalgamating all
reports generated for each project within the dataset. Leveraging these compiled files, graphical
representations illustrating the nature of errors were generated using the Matplotlib library in

Python.

6.9.3 Mutation coverage

6.10 Wrap up

At the culmination of the implementation chapter, the methodologies defined in the design
phase have been diligently executed. Each step was carefully crafted to facilitate the generation
and evaluation of all four test suites. However, before proceeding to analyse the results of this
evaluation, it is imperative to address legal, professional, social, and ethical considerations

within the scope of this report. This will be the focus of the next section.

80

Chapter 7

Legal, Social, Ethical and

Professional Issues

In this section, I address a range of legal, social, ethical, and professional considerations perti-

nent to the evaluation of a fine-tuned large language model (LLM) for unit testing in Java.

7.1 Copyright Licensing

In conducting the tasks laid out in this report, incorporating code from open-source projects
sourced from platforms like GitHub was crucial, hence adherence to copyright and licensing
terms was at the forefront of consideration. For the fine tuning task, the projects considered had
to come with open source licensing agreements, such as the Apache License 2.0 or GNU General
Public License (GPL) to be eligible for selection. In this evaluation, I meticulously adhered
to the licensing terms stipulated by the original projects. Selecting projects with compatible
licenses ensured that usage was legally compliant. Moreover, this report rigorously followed
the attribution guidelines outlined in each license, guaranteeing proper acknowledgment of the
original authors and repositories and adherence to the licensing terms throughout this report.
This approach upholds legal standards and promotes ethical use of open-source code as per the
British Computer Society code of conduct.

Moreover, various open-source libraries and tools, including Jacoco and Checkstyle, were
utilized in the development and setup of the evaluation. While these libraries may have differing
licenses, they all adhere to open-source principles, thereby permitting free use for the general

public. As such, this report strictly adheres to the guidelines set forth by the licenses of these

81

libraries, ensuring compliance and ethical usage throughout the evaluation process.

7.2 Open Sourcing Evaluation Datasets

Transparency and openness are fundamental tenets of scientific research, particularly in the
field of machine learning and artificial intelligence. To uphold these principles, all evaluation
datasets as well as the design setup are openly accessible to the public. By sharing these
datasets, which encompass both training and evaluation data, along with the code utilised
during the evaluation process, the aim is to facilitate reproducibility, enable peer review, and
foster collaboration within the research community. These datasets will be made available
through designated repositories or platforms, ensuring accessibility while safeguarding data
privacy and anonymising sensitive information such as API keys. By making these datasets
open source, I adhere to ethical standards in research and contribute to the advancement of

knowledge in the field.

7.3 Ethical Use of Large Language Models

The deployment of large language models (LLMs) for diverse tasks raises profound ethical con-
siderations. In the context of unit testing in Java, it is imperative to address potential ethical
implications, including biases in model predictions, unintended consequences of model outputs,
and the ethical responsibility of researchers. i recognise the significance of considering issues
related to data privacy, algorithmic transparency, and the societal impact of LLM-generated
code on software development practices. Adhering to ethical guidelines, such as fairness, ac-
countability, and transparency, is paramount throughout the research process involving LLMs.
I am committed to upholding these principles and contributing to the responsible use of Al
technologies in software engineering practices, thereby promoting ethical conduct and social

responsibility in research endeavours.

82

Chapter 8
Results /Evaluation

8.1 Overview

This chapter presents the results of the evaluation conducted to assess the effectiveness of the
test suites generated. The evaluation focused on three key criteria: code coverage, mutation
score, and test correctness. Four distinct test suites were examined: human-written tests, tests
generated by EvoSuite, tests generated by a fine-tuned LLM model, and tests generated by an
ordinary LLM model. Each test suite was subjected to rigorous analysis to evaluate its ability
to adequately test software applications and detect faults.

The assessment of code coverage provides insights into the proportion of code exercised by
the test suites, shedding light on their thoroughness in exploring different paths and function-
alities within the software under test. Mutation score analysis, on the other hand, offers a
deeper evaluation of the test suites’ ability to detect faults by measuring their effectiveness in
killing mutant code variations. Additionally, test correctness evaluation examines the readabil-
ity and maintainability of the test suites by evaluating their adherence to well known code style
conventions.

By evaluating these test suites across multiple dimensions, the overarching aim is to provide
a comprehensive understanding of their strengths, weaknesses, and overall effectiveness. The
findings presented in this chapter offer valuable insights into the capabilities of large language
models in automated test generation and their potential impact on software testing practices.

Let’s move on to the detailed presentation of the evaluation results, starting with the as-

sessment of code coverage

83

8.2 Coverage Assessment

Coverage analysis plays a crucial role in evaluating the effectiveness of test suites by provid-
ing insights into the extent to which the codebase is exercised during testing. It measures
the proportion of code lines and branches that are executed by the test suite, indicating the
thoroughness of test coverage in exploring different paths and functionalities within the soft-
ware under test. A high coverage percentage suggests that the test suite is comprehensive and
likely to detect more defects, while a low coverage percentage may indicate gaps in the testing
strategy, potentially leaving critical areas of the code untested.

In terms of coverage, the results obtained from the evaluation of the test suites are as follows:

1. Untrained Test Suite:
Line Coverage: 72.69

Branch Coverage: 59.125

2. Trained Test Suite:
Line Coverage: 59.125

Branch Coverage: 34

3. Evosuite Test Suite*:
Line Coverage: 61.8

Branch Coverage: 28.4

4. Human Authored Test Suite:
Line Coverage: 63.60

Branch Coverage: 52.18

Note: The Evosuite test suite was measured using a different tool compared to the other
test suites. This difference in measurement tools should be taken into consideration when
interpreting the results.

The coverage analysis reveals significant variations in the coverage percentages across dif-
ferent test suites. The untrained test suite exhibits the highest line and branch coverage per-
centages, suggesting thorough exploration of the codebase. However, the trained test suite and
Evosuite test suite demonstrate lower coverage percentages, indicating potential gaps in test

coverage. The human-authored test suite falls between the untrained and trained test suites in

84

terms of coverage percentages, showcasing a balanced approach to test coverage. These findings
underscore the importance of comprehensive coverage analysis in evaluating the effectiveness

of test suites and identifying areas for improvement in automated test generation approaches.

8.3 Mutation Score Assessment

Mutation testing is a powerful technique used to evaluate the effectiveness of test suites by
introducing small changes (mutations) to the codebase and assessing whether the tests are able
to detect these mutations. A high mutation score indicates that the test suite is capable of
identifying and capturing faults in the code, whereas a low mutation score suggests that the
test suite may lack the ability to effectively detect defects within the codebase.

The mutation score results obtained from the evaluation of the test suites are as follows:

1. Untrained Test Suite:

Mutation Coverage: 21

2. Trained Test Suite:

Mutation Coverage: 16

3. Evosuite Test Suite:

Mutation Coverage: 41

4. Human Authored Test Suite:

Mutation Coverage: 36

The mutation score analysis reveals notable disparities in the effectiveness of the test suites in
detecting mutations. The Evosuite test suite achieves the highest mutation coverage, indicating
its ability to detect a wide range of faults in the codebase. Conversely, the trained test suite
demonstrates lower mutation coverage, suggesting potential weaknesses in the test suite’s ability
to detect mutations introduced into the code. The human-authored test suite falls between
the Evosuite and trained test suites, showcasing a moderate ability to identify faults through
mutation testing. These findings underscore the importance of mutation testing in assessing the
robustness of test suites and identifying areas for improvement in automated test generation

approaches.

85

8.4 Test Correctness Analysis

Test correctness refers to the extent to which test suites adhere to code style conventions, such
as the Oracle SUN Java Code Style Guide. Evaluating test correctness is crucial for ensuring
the readability and maintainability of test suites, which are essential for effective software devel-
opment and maintenance. Adhering to code style conventions promotes consistency and clarity
in codebases, making it easier for developers to understand and modify the code. Consistently
formatted test suites enhance code readability, facilitate code reviews, and contribute to overall
software quality and maintainability.

The assessment of test correctness based on adherence to the Oracle SUN Java Code Style

Guide yielded the following results:

1. Untrained Test Suite:
Total Violations: 72.69

Average Violations per project: 276.2 violations

2. Trained Test Suite:
Total Violations: 59.125

Average Violations per project: 202.9 violations

3. Evosuite Test Suite*:
Total Violations: 61.8

Average Violations per project: 3609 violations

4. Human Authored Test Suite:
Total Violations: 63.60

Average Violations per project: 629 violations

86

Total Checkstyle Errors by Testing Approach

70000 A

60000

50000 A

40000 A

Total Errors

30000 A

20000

10000 +

& o 3
&
& < <
A8 R &
F v
o
(Q‘D
&

Test Suite

To further showcase the distribution of these violations per file the following box plot matrix

showcases the spread of these violations per project for each of the test suites.

Number of Errors

Distribution of Errors in Checkstyle Reports by Testing Approach

140

120 1

100 4

804

604

40 4

204

T
Evosuite

T T T
Trained Untrained Human Authored

Testing Approach

The analysis of test correctness reveals significant differences in adherence to code style

conventions among the test suites. The Evosuite test suite exhibits the highest total violations

and average violations per project, indicating a greater divergence from code style conventions.

Conversely, the trained test suite demonstrates lower total violations and average violations

per project, suggesting better adherence to code style guidelines. These findings underscore the

importance of incorporating code style conventions into automated test generation processes

to improve test readability and maintainability.

87

It is imparative to also explore the spread of the types of violations for each of these test
methodologies. To achieve this the following radar plots demonstrate the main violations in

each of the test suites:

Untrained Error Type Radar Plot Evosuite Error Type Radar Plot
Method) hﬁéihcheck MissingJavadocMethodCheck
Regexpsmgf"etltl‘ne% aidStarimportCheck unt tsCheck [y heck

UnusedimportsChe
lumberCheck Redundantimpo) LineLengthCheck

FinalClassChé&ck

MagicNumberCheck RegexpSjnglelineCheck

JavadocyariableChec

IhitespaceAfferCheck WS rimportCh:

2000
1500, JavadocPackagecCt

gnForExtenfionCheck

NewlineAtEndOfFile :espaceAropndCreck JavadocPackageC

litespaceAfterCheck

NoWhitespaceBefore

hitespaceAroyndCheck wadocVariableCheck MethoglengthChe

simplifyBogleanReturnc

RedundantimpagtCheck

ConstantNamnte FileL€ngthCheck
ParameggrNumberCheck

VisibilityModifie

Todge®mmentCheck MethodParampPadCheck ity ModifierCheck

HiddenFieldCl
dantModifierCheck

Redu NoWhit Beft LeftCurlyCheck
TN Che R nupepaeattercheck R o S A I
Human Authnred Error Type Radar Plot Trained Error Type Radar Plot
i i i exp mg?hllnecheck
outle e e Enack

ParenPadChéck
MethodParamPadCheck a iteshaceAfterCheck
oWhitespaceBgforeCheck

UnusedimporgsCheck S@8trimportCh
RightCurlyCheck

litespaceAfferCheck JavadockRackageC

‘espaceAropndCheck NewlineAENdOfFile

avadocstylgCheck JavadocMethodct

EmptyBloc
nericWhitespaceCheck & \ TypeflameCheck
Operator\WraR c! il i FinaiClassCheck

RedundantModl

InnerAssi
Stat\cxarla

eVarrab
I &e!‘alugfgad&he(k

8.5 Synopsis

The evaluation reveals varying strengths and weaknesses across the test suites. While the
untrained test suite demonstrated higher coverage metrics, it exhibited poorer mutation scores
and code style adherence. In contrast, the Evosuite test suite displayed superior mutation scores
but suffered from higher code style violations. The trained test suite showed improvements in
code style adherence but lagged behind in coverage and mutation score metrics. Overall, the
human-authored test suite performed competitively across all criteria, emphasizing the value

of manual test creation in ensuring comprehensive and high-quality test suites.

88

Chapter 9

Conclusion and Future Work

The project’s conclusions should list the key things that have been learnt as a consequence of
engaging in your project work. For example, “The use of overloading in C++ provides a very
elegant mechanism for transparent parallelisation of sequential programs”, or “The overheads
of linear-time n-body algorithms makes them computationally less efficient than O(nlogn)
algorithms for systems with less than 100000 particles”. Avoid tedious personal reflections like
“I learned a lot about C++ programming..”;, or “Simulating colliding galaxies can be real
fun..”. It is common to finish the report by listing ways in which the project can be taken
further. This might, for example, be a plan for turning a piece of software or hardware into a

marketable product, or a set of ideas for possibly turning your project into an MPhil or PhD.

89

References

1]
2]

3]

[10]

Apache license.
Gnu general public license.

Azat Abdullin, Marat Akhin, and Mikhail Belyaev. Kex at the 2022 sbst tool competition.

In Proceedings of the 15th Workshop on Search-Based Software Testing, pages 35-36, 2022.

Saranya Alagarsamy, Chakkrit Tantithamthavorn, and Aldeida Aleti. A3test: Assertion-

augmented automated test case generation. arXiv preprint arXiv:2302.10352, 2023.

M Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and Janis Benefelds. An
industrial evaluation of unit test generation: Finding real faults in a financial application.
In 2017 IEEE/ACM 39th International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP), pages 263-272. IEEE, 2017.

Ellen Arteca, Sebastian Harner, Michael Pradel, and Frank Tip. Nessie: automatically
testing javascript apis with asynchronous callbacks. In Proceedings of the 44th International

Conference on Software Engineering, pages 1494-1505, 2022.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming
Tan, Wasi Uddin Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, et al. Multi-lingual

evaluation of code generation models. arXiv preprint arXiv:2210.14868, 2022.

Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finoc-
chi. A survey of symbolic execution techniques. ACM Computing Surveys (CSUR), 51(3):1-
39, 2018.

CheckStyle. Checkstyle.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Eval-

uating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

90

[11]

[21]

Pouria Derakhshanfar and Xavier Devroey. Basic block coverage for unit test generation
at the sbst 2022 tool competition. In Proceedings of the 15th Workshop on Search-Based

Software Testing, pages 37-38, 2022.

Filomena Ferrucci, Mark Harman, and Federica Sarro. Search-based software project

management. Software project management in a changing world, pages 373-399, 2014.

Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for object-
oriented software. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th

European conference on Foundations of software engineering, pages 416-419, 2011.

Gordon Fraser and Andrea Arcuri. Sound empirical evidence in software testing. In 2012
34th International Conference on Software Engineering (ICSE), pages 178-188. IEEE,
2012.

Gordon Fraser and Andrea Arcuri. Whole test suite generation. IEEE Transactions on

Software Engineering, 39(2):276-291, 2012.

Gordon Fraser and Andrea Arcuri. A large-scale evaluation of automated unit test gen-

eration using evosuite. ACM Transactions on Software Engineering and Methodology

(TOSEM), 24(2):1-42, 2014.

Patrice Godefroid, Adam Kiezun, and Michael Y Levin. Grammar-based whitebox fuzzing.
In Proceedings of the 29th ACM SIGPLAN conference on programming language design

and implementation, pages 206-215, 2008.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated random
testing. In Proceedings of the 2005 ACM SIGPLAN conference on Programming language

design and implementation, pages 213-223, 2005.
Google. Google java style guide.

G. Grano, F. Palomba, D. D. Nucci, A. D. Lucia, and H. C. Gall. Scented since the
beginning: on the diffuseness of test smells in automatically generated test code. Journal

of Systems and Software, 156:312-327, 2019.

Mark Harman, S Afshin Mansouri, and Yuanyuan Zhang. Search-based software engineer-
ing: Trends, techniques and applications. ACM Computing Surveys (CSUR), 45(1):1-61,
2012.

91

[26]

HuggingFace. Starcoder: A state-of-the-art llm for code.
Google Inc. Guava.

René Just, Darioush Jalali, and Michael D Ernst. Defects4j: A database of existing
faults to enable controlled testing studies for java programs. In Proceedings of the 2014

international symposium on software testing and analysis, pages 437-440, 2014.

Caroline Lemieux, Jeevana Priya Inala, Shuvendu K Lahiri, and Siddhartha Sen. Co-
damosa: Escaping coverage plateaus in test generation with pre-trained large language

models. In International conference on software engineering (ICSE), 2023.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,
Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehension. arXiv

preprint arXiv:1910.13461, 2019.

Adam Lipowski and Dorota Lipowska. Roulette-wheel selection via stochastic acceptance.

Physica A: Statistical Mechanics and its Applications, 391(6):2193-2196, 2012.

Phil McMinn. Search-based software test data generation: a survey. Software testing,

Verification and reliability, 14(2):105-156, 2004.
Microsoft. Microsoft methods2test.

Brad L Miller, David E Goldberg, et al. Genetic algorithms, tournament selection, and

the effects of noise. Complex systems, 9(3):193-212, 1995.
M. Motwani. High-quality automated program repair. 2021.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio

Savarese, and Caiming Xiong. A conversational paradigm for program synthesis, 2022.

Mark O’Keeffe and Mel O Cinnéide. Search-based software maintenance. In Conference

on software maintenance and reengineering (CSMR’06), pages 10-pp. IEEE, 2006.
OpenAl. Chatgpt (2021) openai.

OpenAl. Chatgpt (2021) openai.

OpenAl. Openai guide to fine tuning documentation.

Oracle. Sun java style guide.

92

[38]
[39]

[40]

[41]

[42]

[48]

[49]

Jacoco Org. Jacoco: Java code coverage library.
OWASP. Owasp defectdojo.

Carlos Pacheco and Michael D Ernst. Randoop: feedback-directed random testing for java.
In Companion to the 22nd ACM SIGPLAN conference on Object-oriented programming

systems and applications companion, pages 815-816, 2007.

Carlos Pacheco, Shuvendu K Lahiri, Michael D Ernst, and Thomas Ball. Feedback-
directed random test generation. In 29th International Conference on Software Engineering

(ICSE’07), pages 75-84. IEEE, 2007.

Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Reformulating branch
coverage as a many-objective optimization problem. In 2015 IEEFE 8th international con-

ference on software testing, verification and validation (ICST), pages 1-10. IEEE, 2015.

Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Automated test case
generation as a many-objective optimisation problem with dynamic selection of the targets.

IEEE Transactions on Software Engineering, 44(2):122-158, 2017.
Pitest.Org. Pitest mutation testing.

Spring projects. springboot.

ReactiveX. Rxjava.

Max Schéfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. An empirical evaluation
of using large language models for automated unit test generation. arXiv preprint

arXi:2302.06527, 2023.

S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri. Do automatically
generated unit tests find real faults? an empirical study of effectiveness and challenges
(t). 2015 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE), 2015.

S. Shamshiri, J. M. Rojas, J. P. Galeotti, and N. Walkinshaw. How do automatically gener-
ated unit tests influence software maintenance? 2018 IEEE 11th International Conference

on Software Testing, Verification and Validation (ICST), 2018.

Mohammed Latif Siddiq, Joanna Santos, Ridwanul Hasan Tanvir, Noshin Ulfat, Fahmid Al
Rifat, and Vinicius Carvalho Lopes. Exploring the effectiveness of large language models

in generating unit tests. arXiv preprint arXiv:2305.00418, 2023.

93

[51]
[52]

[53]

[58]

springprojects. Spring-framework.
square. Retrofit.

Yutian Tang, Zhijie Liu, Zhichao Zhou, and Xiapu Luo. Chatgpt vs SBST: A comparative
assessment of unit test suite generation. CoRR, abs/2307.00588, 2023.

TheAlgorithms. Thealgorithmsjava.

Paolo Tonella. Evolutionary testing of classes. ACM SIGSOFT Software Engineering
Notes, 29(4):119-128, 2004.

Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel Sundare-
san. Unit test case generation with transformers and focal context. arXiv preprint

arXi:2009.05617, 2020.

Shengcheng Yu, Chunrong Fang, Yuchen Ling, Chentian Wu, and Zhenyu Chen. Llm for
test script generation and migration: Challenges, capabilities, and opportunities. arXiv

preprint arXiv:2309.1357/4, 2023.

Yuanyuan Zhang, Anthony Finkelstein, and Mark Harman. Search based requirements
optimisation: Existing work and challenges. In Requirements Engineering: Foundation
for Software Quality: 14th International Working Conference, REFSQ 2008 Montpellier,
France, June 16-17, 2008 Proceedings 14, pages 88-94. Springer, 2008.

Zhichao Zhou, Yuming Zhou, Chunrong Fang, Zhenyu Chen, and Yutian Tang. Selectively
combining multiple coverage goals in search-based unit test generation. In Proceedings of
the 37th IEEE/ACM International Conference on Automated Software Engineering, pages

1-12, 2022.

94

Appendix A

Extra Information

A.1 Tables, proofs, graphs, test cases, ...

The appendices contain information that is peripheral to the main body of the report. Infor-
mation typically included in the Appendix are things like tables, proofs, graphs, test cases or
any other material that would break up the theme of the text if it appeared in the body of the
report. It is necessary to include your source code listings in an appendix that is separate from

the body of your written report (see the information on Program Listings below).

95

Appendix B

User Guide

B.1 Instructions

You must provide an adequate user guide for your software. The guide should provide easily
understood instructions on how to use your software. A particularly useful approach is to
treat the user guide as a walk-through of a typical session, or set of sessions, which collectively
display all of the features of your package. Technical details of how the package works are
rarely required. Keep the guide concise and simple. The extensive use of diagrams, illustrating
the package in action, can often be particularly helpful. The user guide is sometimes included
as a chapter in the main body of the report, but is often better included in an appendix to the

main report.

96

Appendix C

Source Code

C.1 Instructions

Complete source code listings must be submitted as an appendix to the report. The project
source codes are usually spread out over several files/units. You should try to help the reader to
navigate through your source code by providing a “table of contents” (titles of these files/units
and one line descriptions). The first page of the program listings folder must contain the
following statement certifying the work as your own: “I verify that I am the sole author of the
programs contained in this folder, except where explicitly stated to the contrary”. Your (typed)
signature and the date should follow this statement.

All work on programs must stop once the code is submitted to KEATS. You are required to
keep safely several copies of this version of the program and you must use one of these copies
in the project examination. Your examiners may ask to see the last-modified dates of your
program files, and may ask you to demonstrate that the program files you use in the project
examination are identical to the program files you have uploaded to KEATS. Any attempt to
demonstrate code that is not included in your submitted source listings is an attempt to cheat;
any such attempt will be reported to the KCL Misconduct Committee.

You may find it easier to firstly generate a PDF of your source code using a
text editor and then merge it to the end of your report. There are many free tools

available that allow you to merge PDF files.

97

